Visualizing choriocapillaris using swept-source optical coherence tomography angiography with various probe beam sizes.

Imaging choriocapillaris (CC) is a long-term challenge for commercial OCT angiography (OCTA) systems due to limited transverse resolution. Effects of transverse resolution on the visualization of a CC microvascular network are explored and demonstrated in this paper. We use three probe beams with sizes of ~1.12 mm, ~2.51 mm and ~3.50 mm at the pupil plane, which deliver an estimated transverse resolution at the retina of 17.5 µm, 8.8 µm and 7.0 µm, respectively, to investigate the ability of OCTA to resolve the CC capillary vessels. The complex optical microangiography algorithm is applied to extract blood flow in the CC slab. Mean retinal pigment epithelium (RPE) to CC (RPE-CC) distance, mean CC inter-vascular spacing and the magnitude in the radially-averaged power spectrum are quantified. We demonstrate that a clearer CC lobular capillary network is resolved in the angiograms provided by a larger beam size. The image contrast of the CC angiogram with a large beam size of 3.50 mm is 114% higher than that with a small beam size of 1.12 mm. While the measurements of the mean RPE-CC distance and CC inter-vascular spacing are almost consistent regardless of the beam sizes, they are more reliable and stable with the larger beam size of 3.50 mm. We conclude that the beam size is a key parameter for CC angiography if the purpose of the investigation is to visualize the individual CC capillaries.

[1]  Hui Rong Zhang,et al.  Scanning electron-microscopic study of corrosion casts on retinal and choroidal angioarchitecture in man and animals , 1994, Progress in Retinal and Eye Research.

[2]  D. S. Mcleod,et al.  High-resolution histologic analysis of the human choroidal vasculature. , 1994, Investigative ophthalmology & visual science.

[3]  H. Grossniklaus,et al.  Histologic and morphometric analysis of the choroid, Bruch's membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes. , 1999, Survey of ophthalmology.

[4]  G. Lang,et al.  Morphometric changes in the choriocapillaris and choroidal vasculature in eyes with advanced glaucomatous changes , 2000 .

[5]  G. Lang,et al.  Morphometrische Veränderungen der Choriokapillaris sowie der Chorioidea in Augen mit fortgeschrittener glaukomatöser Schädigung , 2000, Der Ophthalmologe.

[6]  H. Grossniklaus,et al.  [Morphometric changes in the choriocapillaris and choroid in eyes with advanced glaucoma damage]. , 2000, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[7]  G. Clover,et al.  The effect of age on the macromolecular permeability of human Bruch's membrane. , 2001, Investigative ophthalmology & visual science.

[8]  Andrzej W. Fryczkowski,et al.  Anatomical and functional choroidal lobuli , 2004, International Ophthalmology.

[9]  Ruikang K. Wang,et al.  Theory, developments and applications of optical coherence tomography , 2005 .

[10]  Ruikang K. Wang,et al.  In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. , 2008, Optics express.

[11]  Ruikang K. Wang,et al.  Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. , 2010, Optics letters.

[12]  Ruikang K. Wang,et al.  High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography. , 2010, Journal of biomedical optics.

[13]  Daniel M. Schwartz,et al.  Optical imaging of the chorioretinal vasculature in the living human eye , 2013, Proceedings of the National Academy of Sciences.

[14]  J. Duker,et al.  Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography , 2013, PloS one.

[15]  U. Schraermeyer,et al.  Choriocapillaris breakdown precedes retinal degeneration in age-related macular degeneration , 2014, Neurobiology of Aging.

[16]  Ruikang K. Wang,et al.  User-guided segmentation for volumetric retinal optical coherence tomography images. , 2014, Journal of biomedical optics.

[17]  Ruikang K. Wang,et al.  Methods and algorithms for optical coherence tomography-based angiography: a review and comparison , 2015, Journal of biomedical optics.

[18]  Simon S. Gao,et al.  Optical Coherence Tomography Angiography in Choroideremia: Correlating Choriocapillaris Loss With Overlying Degeneration. , 2016, JAMA ophthalmology.

[19]  Eric M. Moult,et al.  Visualizing the Choriocapillaris Under Drusen: Comparing 1050-nm Swept-Source Versus 840-nm Spectral-Domain Optical Coherence Tomography Angiography , 2016, Investigative ophthalmology & visual science.

[20]  Hiroshi Tamura,et al.  Increased Choroidal Vascularity in Central Serous Chorioretinopathy Quantified Using Swept-Source Optical Coherence Tomography. , 2016, American journal of ophthalmology.

[21]  Ravi S. Jonnal,et al.  Imaging of the human choroid with a 1.7 MHz A-scan rate FDML swept source OCT system , 2017, BiOS.

[22]  Brian T. Soetikno,et al.  Choriocapillaris Nonperfusion is Associated With Poor Visual Acuity in Eyes With Reticular Pseudodrusen. , 2017, American journal of ophthalmology.

[23]  Wu Liu,et al.  OCT angiography quantifying choriocapillary circulation in idiopathic macular hole before and after surgery , 2017, Graefe's Archive for Clinical and Experimental Ophthalmology.

[24]  Robert J Zawadzki,et al.  Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited]. , 2017, Biomedical optics express.

[25]  Sina Farsiu,et al.  Enhanced visualization of peripheral retinal vasculature with wavefront sensorless adaptive optics optical coherence tomography angiography in diabetic patients. , 2017, Optics letters.

[26]  Ruikang K. Wang,et al.  Optical coherence tomography based angiography [Invited]. , 2017, Biomedical optics express.

[27]  Sina Farsiu,et al.  Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions. , 2017, Biomedical optics express.

[28]  Francesco Bandello,et al.  Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy , 2017, Acta Diabetologica.

[29]  Ruikang K. Wang,et al.  Complex signal-based optical coherence tomography angiography enables in vivo visualization of choriocapillaris in human choroid , 2017, Journal of biomedical optics.

[30]  Lei Liu,et al.  Quantifying Microvascular Abnormalities With Increasing Severity of Diabetic Retinopathy Using Optical Coherence Tomography Angiography , 2017, Investigative ophthalmology & visual science.

[31]  Rosa Dolz-Marco,et al.  Quantitative OCT Angiography of the Retinal Microvasculature and the Choriocapillaris in Myopic Eyes. , 2017, Investigative ophthalmology & visual science.

[32]  Kazuhiro Kurokawa,et al.  Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris [Invited]. , 2017, Biomedical optics express.

[33]  Ruikang K Wang,et al.  Improving visualization and quantitative assessment of choriocapillaris with swept source OCTA through registration and averaging applicable to clinical systems , 2018, Scientific Reports.

[34]  Luis de Sisternes,et al.  A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography , 2018, Investigative ophthalmology & visual science.

[35]  L. Kodjikian,et al.  Optical Coherence Tomography Angiography Quantitative Assessment of Choriocapillaris Blood Flow in Central Serous Chorioretinopathy. , 2018, American journal of ophthalmology.

[36]  Luis de Sisternes,et al.  Accurate estimation of choriocapillaris flow deficits beyond normal intercapillary spacing with swept source OCT angiography. , 2018, Quantitative imaging in medicine and surgery.

[37]  B. Cense,et al.  Retinal imaging with optical coherence tomography and low‐loss adaptive optics using a 2.8‐mm beam size , 2019, Journal of biophotonics.

[38]  Iwona Gorczynska,et al.  Megahertz-rate optical coherence tomography angiography improves the contrast of the choriocapillaris and choroid in human retinal imaging. , 2018, Biomedical optics express.