Light quality management in fruit orchards: physiological and technological aspects

El manejo de la calidad de la luz (espectro de la luz solar) promete proveer una nueva alternativa tecnologica para la produccion sostenible de cultivos horticolas. Sin embargo, existe poca informacion acerca de aspectos fisiologicos y tecnologicos sobre el manejo de la calidad de la luz en cultivos frutales. La composicion de luz solar cambia ampliamente en la canopia de los huertos, induciendo diferentes respuestas en la planta mediadas por la actividad del fitocromo (PHY) y criptocromo (CRY). Una alta proporcion de luz roja-lejana (FR) en relacion a la roja (R), incrementa la elongacion de brotes, mientras que la luz azul (B) induce un acortamiento de brotes. La luz R y ultravioleta (UV) incrementan la sintesis de antocianinas en la piel de los frutos, mientras que la luz FR muestra un efecto negativo. La luz R y B tambien pueden alterar caracteres morfo-fisiologicos de la hoja en arboles frutales, tales como grosor de la palizada, apertura estomatica y contenido de clorofila. Ademas de mejorar la disponibilidad de la luz fotosinteticamente activa (PAR), el uso de film reflectantes mejora la proporcion de luz UV y R, con efectos positivos sobre respuestas mediadas por el PHY (color de fruto, peso de fruto y crecimiento de brotes), como se reporto en manzano (Malus domestica Borkh.), duraznero (Prunus persica L. Batsch) y cerezo (Prunus avium (L.) L.). Las mallas de color alteran ampliamente la composicion espectral de la luz con efectos sobre el crecimiento de planta, rendimiento y calidad en huertos de manzano, duraznero, kiwi (Actinidia deliciosa A. Chev. C.F. Liang & A.R. Ferguson) y arandano (Vaccinium corymbosum L.). Los mecanismos de las mallas de color parecen estar asociados a procesos fotosinteticos y morfogeneticos regulados por la disponibilidad de PAR, la proporcion de luz B/R, y actividad del CRY. La alteracion de la calidad de la luz afecta significantemente respuestas de la planta en arboles frutales y podria ser una herramienta util para el manejo sostenible (ej. bajo uso de quimicos y practicas laboriosas) del rendimiento y calidad en huertos modernos.

[1]  Y. Shahak,et al.  Light‐Quality Manipulation by Horticulture Industry , 2007 .

[2]  L. C. Grappadelli,et al.  Early Season Patterns of Carbohydrate Partitioning in Exposed and Shaded Apple Branches , 1994 .

[3]  Light environment, growth and morphogenesis in a peach tree canopy , 1994 .

[4]  H. Tsukaya,et al.  Photomorphogenesis of leaves: shade-avoidance and differentiation of sun and shade leaves , 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[5]  E. Gussakovsky,et al.  Improving Solar Energy Utilization, Production and Fruit Quality in Orchards and Vineyards by Photoselective Netting , 2008 .

[6]  J. B. Reid,et al.  Blue and red photoselective shadecloths modify pea height through altered blue irradiance perceived by the cry1 photoreceptor , 2008 .

[7]  O. Arakawa,et al.  Relative effectiveness and interaction of ultraviolet‐B, red and blue light in anthocyanin synthesis of apple fruit , 1985 .

[8]  J. Palmer 16 – CANOPY MANIPULATION FOR OPTIMUM UTILIZATION OF LIGHT , 1989 .

[9]  M. Blanke Alternatives to reflective mulch cloth (Extenday™) for apple under hail net? , 2008 .

[10]  Michael G. Ryan,et al.  Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine , 2001 .

[11]  S. Wand,et al.  Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. , 2002, The New phytologist.

[12]  Ada Nissim-Levi,et al.  Coloured shade nets can improve the yield and quality of green decorative branches of Pittosporum variegatum , 2001 .

[13]  X. Deng,et al.  Light Control of Plant Development: A Role of the Ubiquitin/Proteasome-Mediated Proteolysis , 2005 .

[14]  Harry Smith,et al.  Phytochromes and light signal perception by plants—an emerging synthesis , 2000, Nature.

[15]  H. Sinoquet,et al.  Preliminary measurement and simulation of the spatial distribution of the Morphogenetically Active Radiation (MAR) within an isolated tree canopy , 2000 .

[16]  Z. Ju,et al.  Effects of covering the orchard floor with reflecting films on pigment accumulation and fruit coloration in 'Fuji' apples , 1999 .

[17]  A. Mancinelli Light-dependent anthocyanin synthesis: A model system for the study of plant photomorphogenesis , 2008, The Botanical Review.

[18]  A. Pozo,et al.  Spectral irradiance, gas exchange characteristics and leaf traits of Vaccinium corymbosum L. ‘Elliott’ grown under photo-selective nets , 2012 .

[19]  O. M. Heide Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species , 2008 .

[20]  S. Lavee,et al.  The Role of Light in Leaf and Flower Bud Break of the Peach (Prunus persica) , 1966 .

[21]  Osvaldo Facini,et al.  Leaf characteristics and optical properties of different woody species , 1997, Trees.

[22]  M. Blanke,et al.  Coloured hailnets alter light transmission, spectra and phytochrome, as well as vegetative growth, leaf chlorophyll and photosynthesis and reduce flower induction of apple , 2008, Plant Growth Regulation.

[23]  R. H. Grant Partitioning of biologically active radiation in plant canopies , 1997 .

[24]  Chentao Lin Blue Light Receptors and Signal Transduction Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.000646. , 2002, The Plant Cell Online.

[25]  R. Muleo,et al.  Photoregulation of growth and branching of plum shoots: Physiological action of two photosystems , 2001, In Vitro Cellular & Developmental Biology - Plant.

[26]  Park S. Nobel,et al.  Biophysical plant physiology and ecology , 1983 .

[27]  T. Kuroiwa,et al.  Anatomical changes including chloroplast structure in peach leaves under different light conditions , 1988 .

[28]  J. Retamales,et al.  COLORED SHADING NETS INCREASE YIELDS AND PROFITABILITY OF HIGHBUSH BLUEBERRIES , 2008 .

[29]  A. Erez,et al.  Growth of Peach Plants under Different Filtered Sunlight Conditions , 1972 .

[30]  J. W. Kelly,et al.  Problems of reporting spectral quality and interpreting phytochrome-mediated responses , 1994 .

[31]  S. Hemming,et al.  Use of Natural and Artificial Light in Horticulture - Interaction of Plant and Technology , 2011 .

[32]  P. Wagenmakers,et al.  Effects of light on flavonoid and chlorogenic acid levels in the skin of ‘Jonagold’ apples , 2001 .

[33]  L. Corelli-Grappadelli,et al.  PHYSIOLOGICAL ASPECTS AFFECTED BY PHOTOSELECTIVE NETS IN APPLES: PRELIMINARY STUDIES , 2011 .

[34]  Yuval Cohen,et al.  COLORNETS: A NEW APPROACH FOR LIGHT MANIPULATION IN FRUIT TREES , 2004 .

[35]  O. M. Heide,et al.  Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. , 2005, Tree physiology.

[36]  R. Baraldi,et al.  EFFECTS OF SIMULATED LIGHT ENVIRONMENTS ON GROWTH AND LEAF MORPHOLOGY OF PEACH PLANTS , 1998 .

[37]  S. Vemmos,et al.  Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive (Olea europaea L.) , 2007, Photosynthetica.

[38]  M. Kasperbauer Phytochrome in Crop Production , 2000 .

[39]  Zhengwang Jiang,et al.  Tree Fruit Reflective Film Improves Red Skin Coloration and Advances Maturity in Peach , 2001 .

[40]  S. Tustin,et al.  Effect of previous-season and current light environments on early-season spur development and assimilate translocation in 'Golden Delicious' apple , 1992 .

[41]  L. C. Grappadelli,et al.  IS MAXIMIZING ORCHARD LIGHT INTERCEPTION ALWAYS THE BEST CHOICE , 2007 .

[42]  R. Baraldi,et al.  Blue light regulation of the growth of Prunus persica plants in a long term experiment: morphological and histological observations , 1999, Trees.

[43]  J. C. Sager,et al.  Photosynthetic Efficiency and Phytochrome Photoequilibria Determination Using Spectral Data , 1988 .

[44]  D. Glenn,et al.  The use of plastic films and sprayable reflective particle films to increase light penetration in apple canopies and improve apple color and weight , 2007 .

[45]  S. Lavee,et al.  The Effect of Limitation in Light During the Rest Period On Leaf Bud Break of the Peach (Prunus persica) , 1968 .

[46]  J. Syvertsen,et al.  Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. , 2003, Tree physiology.

[47]  O. Arakawa Photoregulation of Anthocyanin Synthesis in Apple Fruit under UV-B and Red Light , 1988 .

[48]  Joel Paris Many Hands Make Light Work: Thank You , 2009, Canadian journal of psychiatry. Revue canadienne de psychiatrie.

[49]  Paul G. Jarvis,et al.  Proximity signal and shade avoidance differences between early and late successional trees , 2001, Nature.

[50]  S. Assmann,et al.  Light regulation of stomatal movement. , 2007, Annual review of plant biology.

[51]  John E. Jackson,et al.  Light Interception and Utilization by Orchard Systems , 2011 .

[52]  R. Romano,et al.  Use of photo-selective nets for hail protection of kiwifruit vines in southern Italy , 2008 .

[53]  J. Palmer Light Transmittance by Apple Leaves and Canopies , 1977 .