Application of Generalized Mie Theory to EELS Calculations as a Tool for Optimization of Plasmonic Structures
暂无分享,去创建一个
Christian Matyssek | Martin Arnold | Thomas Wriedt | Wolfram Hergert | Lars Kiewidt | M. Arnold | T. Wriedt | W. Hergert | M. Karamehmedović | L. Kiewidt | C. Matyssek | Stefan Thomas | Stefan Thomas | Mirza Karamehmedović
[1] F. D. Abajo,et al. Optical excitations in electron microscopy , 2009, 0903.1669.
[2] Y L Xu,et al. Electromagnetic scattering by an aggregate of spheres. , 1995, Applied optics.
[3] M. König,et al. Discontinuous Galerkin methods in nanophotonics , 2011 .
[4] F. D. Abajo,et al. Spatial Nonlocality in the Optical Response of Metal Nanoparticles , 2011 .
[5] B. Peterson,et al. T matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3) , 1973 .
[6] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .
[7] G. Schatz,et al. An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium , 1987 .
[8] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[9] Stéphane Berciaud,et al. Observation of intrinsic size effects in the optical response of individual gold nanoparticles. , 2005, Nano letters.
[10] P. Etchegoin,et al. An analytic model for the optical properties of gold. , 2006, The Journal of chemical physics.
[11] D. Mackowski,et al. Analysis of radiative scattering for multiple sphere configurations , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[12] P. Barber. Absorption and scattering of light by small particles , 1984 .
[13] Marc Lamy de la Chapelle,et al. Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method , 2005 .
[14] Allen Taflove,et al. Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .
[15] Michel Bosman,et al. Nanoplasmonics: classical down to the nanometer scale. , 2012, Nano letters.
[16] Maxim Sukharev,et al. Coherent control of light propagation via nanoparticle arrays , 2007 .
[17] Luca Dal Negro,et al. Genetically engineered plasmonic nanoarrays. , 2012, Nano letters.
[18] J. Baumberg,et al. Actively tuned plasmons on elastomerically driven Au nanoparticle dimers. , 2010, Nano letters.
[19] Nikolai G. Khlebtsov,et al. Orientation-averaged radiative properties of an arbitrary configuration of scatterers , 2003 .
[20] Maxim Sukharev,et al. Phase and polarization control as a route to plasmonic nanodevices. , 2006, Nano letters.
[21] Nicolas Geuquet,et al. EELS and optical response of a noble metal nanoparticle in the frame of a discrete dipole approximation , 2010 .
[22] C. Hafner. The generalized multipole technique for computational electromagnetics , 1990 .
[23] A. Polman,et al. Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy , 2014 .
[24] P. Waterman. Matrix formulation of electromagnetic scattering , 1965 .
[25] F. D. Abajo,et al. Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.
[26] Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas. , 2012, ACS nano.
[27] M. E. Galassi,et al. GNU SCIENTI C LIBRARY REFERENCE MANUAL , 2005 .
[28] K. Busch,et al. Computing electron energy loss spectra with the Discontinuous Galerkin Time-Domain method , 2011 .
[29] Adrian Doicu,et al. Light Scattering by Systems of Particles: Null-Field Method with Discrete Sources: Theory and Programs , 2014 .
[30] Melinda Piket-May,et al. 9 – Computational Electromagnetics: The Finite-Difference Time-Domain Method , 2005 .
[31] Y. L. Xu. Electromagnetic scattering by an aggregate of spheres: errata. , 1998, Applied optics.
[32] S. C. Hill,et al. Light Scattering by Particles: Computational Methods , 1990 .
[33] P. Ginzburg,et al. Resonances on-demand for plasmonic nano-particles. , 2011, Nano letters.
[34] Bo Yan,et al. Optimizing Gold Nanoparticle Cluster Configurations (n ≤ 7) for Array Applications. , 2011, The journal of physical chemistry. C, Nanomaterials and interfaces.
[35] Naomi J. Halas,et al. Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles , 2004 .
[36] J. Aizpurua,et al. Plasmonic excitation and manipulation with an electron beam , 2012 .
[37] Adrian Doicu,et al. Light Scattering by Systems of Particles , 2006 .
[38] B. Draine,et al. Discrete-Dipole Approximation For Scattering Calculations , 1994 .
[39] T. Wriedt,et al. Comparison of numerical methods in near-field computation for metallic nanoparticles. , 2011, Optics express.
[40] T. Seideman,et al. Coherent control approaches to light guidance in the nanoscale. , 2006, The Journal of chemical physics.
[41] Wei Chu,et al. A new evolutionary search strategy for global optimization of high-dimensional problems , 2011, Inf. Sci..
[42] Plasmonic dimer antennas for surface enhanced Raman scattering. , 2012, Nanotechnology.
[43] T. Wriedt,et al. The T-Matrix method in electron energy loss and cathodoluminescence spectroscopy calculations for metallic nano-particles. , 2012, Ultramicroscopy.
[44] F. G. D. Abajo. Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam , 1999 .
[45] R. W. Christy,et al. Optical Constants of the Noble Metals , 1972 .
[46] N. Wu,et al. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering. , 2015, Physical chemistry chemical physics : PCCP.
[47] F. G. D. Abajo,et al. Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .
[48] G. Schatz,et al. Radiative effects in plasmonic aluminum and silver nanospheres and nanorods , 2015 .
[49] Kurt Busch,et al. Spatio-spectral characterization of photonic meta-atoms with electron energy-loss spectroscopy , 2011 .