Application of Generalized Mie Theory to EELS Calculations as a Tool for Optimization of Plasmonic Structures

Technical applications of plasmonic nanostructures require a careful structural optimization with respect to the desired functionality. The success of such optimizations strongly depends on the applied method. We extend the generalized multiparticle Mie (GMM) computational electromagnetic method and use it to excite a system of plasmonic nanoparticles with an electron beam. This method is applied to EELS calculations of a gold dimer and compared to other methods. It is demonstrated that the GMM method is so efficient, that it can be used in the context of structural optimization by the application of genetic algorithms combined with a simplex algorithm. The scheme is applied to the design of plasmonic filters.

[1]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[2]  Y L Xu,et al.  Electromagnetic scattering by an aggregate of spheres. , 1995, Applied optics.

[3]  M. König,et al.  Discontinuous Galerkin methods in nanophotonics , 2011 .

[4]  F. D. Abajo,et al.  Spatial Nonlocality in the Optical Response of Metal Nanoparticles , 2011 .

[5]  B. Peterson,et al.  T matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3) , 1973 .

[6]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[7]  G. Schatz,et al.  An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium , 1987 .

[8]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[9]  Stéphane Berciaud,et al.  Observation of intrinsic size effects in the optical response of individual gold nanoparticles. , 2005, Nano letters.

[10]  P. Etchegoin,et al.  An analytic model for the optical properties of gold. , 2006, The Journal of chemical physics.

[11]  D. Mackowski,et al.  Analysis of radiative scattering for multiple sphere configurations , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[12]  P. Barber Absorption and scattering of light by small particles , 1984 .

[13]  Marc Lamy de la Chapelle,et al.  Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method , 2005 .

[14]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[15]  Michel Bosman,et al.  Nanoplasmonics: classical down to the nanometer scale. , 2012, Nano letters.

[16]  Maxim Sukharev,et al.  Coherent control of light propagation via nanoparticle arrays , 2007 .

[17]  Luca Dal Negro,et al.  Genetically engineered plasmonic nanoarrays. , 2012, Nano letters.

[18]  J. Baumberg,et al.  Actively tuned plasmons on elastomerically driven Au nanoparticle dimers. , 2010, Nano letters.

[19]  Nikolai G. Khlebtsov,et al.  Orientation-averaged radiative properties of an arbitrary configuration of scatterers , 2003 .

[20]  Maxim Sukharev,et al.  Phase and polarization control as a route to plasmonic nanodevices. , 2006, Nano letters.

[21]  Nicolas Geuquet,et al.  EELS and optical response of a noble metal nanoparticle in the frame of a discrete dipole approximation , 2010 .

[22]  C. Hafner The generalized multipole technique for computational electromagnetics , 1990 .

[23]  A. Polman,et al.  Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy , 2014 .

[24]  P. Waterman Matrix formulation of electromagnetic scattering , 1965 .

[25]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[26]  Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas. , 2012, ACS nano.

[27]  M. E. Galassi,et al.  GNU SCIENTI C LIBRARY REFERENCE MANUAL , 2005 .

[28]  K. Busch,et al.  Computing electron energy loss spectra with the Discontinuous Galerkin Time-Domain method , 2011 .

[29]  Adrian Doicu,et al.  Light Scattering by Systems of Particles: Null-Field Method with Discrete Sources: Theory and Programs , 2014 .

[30]  Melinda Piket-May,et al.  9 – Computational Electromagnetics: The Finite-Difference Time-Domain Method , 2005 .

[31]  Y. L. Xu Electromagnetic scattering by an aggregate of spheres: errata. , 1998, Applied optics.

[32]  S. C. Hill,et al.  Light Scattering by Particles: Computational Methods , 1990 .

[33]  P. Ginzburg,et al.  Resonances on-demand for plasmonic nano-particles. , 2011, Nano letters.

[34]  Bo Yan,et al.  Optimizing Gold Nanoparticle Cluster Configurations (n ≤ 7) for Array Applications. , 2011, The journal of physical chemistry. C, Nanomaterials and interfaces.

[35]  Naomi J. Halas,et al.  Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles , 2004 .

[36]  J. Aizpurua,et al.  Plasmonic excitation and manipulation with an electron beam , 2012 .

[37]  Adrian Doicu,et al.  Light Scattering by Systems of Particles , 2006 .

[38]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[39]  T. Wriedt,et al.  Comparison of numerical methods in near-field computation for metallic nanoparticles. , 2011, Optics express.

[40]  T. Seideman,et al.  Coherent control approaches to light guidance in the nanoscale. , 2006, The Journal of chemical physics.

[41]  Wei Chu,et al.  A new evolutionary search strategy for global optimization of high-dimensional problems , 2011, Inf. Sci..

[42]  Plasmonic dimer antennas for surface enhanced Raman scattering. , 2012, Nanotechnology.

[43]  T. Wriedt,et al.  The T-Matrix method in electron energy loss and cathodoluminescence spectroscopy calculations for metallic nano-particles. , 2012, Ultramicroscopy.

[44]  F. G. D. Abajo Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam , 1999 .

[45]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[46]  N. Wu,et al.  Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering. , 2015, Physical chemistry chemical physics : PCCP.

[47]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[48]  G. Schatz,et al.  Radiative effects in plasmonic aluminum and silver nanospheres and nanorods , 2015 .

[49]  Kurt Busch,et al.  Spatio-spectral characterization of photonic meta-atoms with electron energy-loss spectroscopy , 2011 .