Carbon nanotubes for ultrafast fibre lasers

Abstract Carbon nanotubes (CNTs) possess both remarkable optical properties and high potential for integration in various photonic devices. We overview, here, recent progress in CNT applications in fibre optics putting particular emphasis on fibre lasers. We discuss fabrication and characterisation of different CNTs, development of CNT-based saturable absorbers (CNT-SA), their integration and operation in fibre laser cavities putting emphasis on state-of-the-art fibre lasers, mode locked using CNT-SA. We discuss new design concepts of high-performance ultrafast operation fibre lasers covering ytterbium (Yb), bismuth (Bi), erbium (Er), thulium (Tm) and holmium (Ho)-doped fibre lasers.

[1]  A. Reddy,et al.  Design and fabrication of carbon nanotube-based microfuel cell and fuel cell stack coupled with hydrogen storage device , 2007 .

[2]  S. Mukamel,et al.  Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. , 2000, Annual review of physical chemistry.

[3]  M. Dresselhaus,et al.  Probing phonon dispersion relations of graphite by double resonance Raman scattering. , 2001, Physical review letters.

[4]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[5]  A. M. Rao,et al.  Raman Scattering Study of Coalesced Single Walled Carbon Nanotubes , 1998 .

[6]  S. Turitsyn,et al.  Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter. , 2012, Optics Express.

[7]  Valeriy E. Karasik,et al.  Ultra-short pulse generation in the hybridly mode-locked erbium-doped all-fiber ring laser with a distributed polarizer , 2015 .

[8]  H. Haus Parameter ranges for CW passive mode locking , 1976 .

[9]  H. Haus Mode-locking of lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  M. Z. Zulkifli,et al.  Mode-locked L-band bismuth–erbium fiber laser using carbon nanotubes , 2014 .

[11]  Ming Zheng,et al.  DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes , 2009, Nature.

[12]  S. Kishimoto,et al.  Excitonic transition energies in single‐walled carbon nanotubes: Dependence on environmental dielectric constant , 2007 .

[13]  A. Kurkov,et al.  Dynamic behavior of laser based on the heavily holmium doped fiber , 2010 .

[14]  Elena D. Obraztsova,et al.  SESAM and SWCNT Mode-Locked All-Fiber Thulium-Doped Lasers Based on the Nonlinear Amplifying Loop Mirror , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  H. Arof,et al.  Q-switched erbium doped fiber laser based on single and multiple walled carbon nanotubes embedded in polyethylene oxide film as saturable absorber , 2015 .

[16]  Fu-Rong Chen,et al.  Production and in‐situ Metal Filling of Carbon Nanotubes in Water , 2001 .

[17]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[18]  R. Krupke,et al.  Length separation studies of single walled carbon nanotube dispersions , 2006 .

[19]  Neha Arora,et al.  Arc discharge synthesis of carbon nanotubes: Comprehensive review , 2014 .

[20]  Zheng Liu,et al.  New CBCPW‐to‐SIW transition with improved bandwidth , 2014 .

[21]  H. Haus Theory of mode locking with a fast saturable absorber , 1975 .

[22]  A. Jorio,et al.  Characterization of DNA-wrapped carbon nanotubes by resonance Raman and optical absorption spectroscopies , 2007 .

[23]  Vl.A. Margulis,et al.  Theoretical study of third-order nonlinear optical response of semiconductor carbon nanotubes , 1998 .

[24]  Emmanuel Flahaut,et al.  Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation , 2014, ACS nano.

[25]  Houjin Huang,et al.  High-quality single-walled carbon nanotubes from arc-produced soot , 2002 .

[26]  J. Ketterson,et al.  Large scale synthesis of single‐shell carbon nanotubes , 1994 .

[27]  S. Xie,et al.  Large-Scale Synthesis of Aligned Carbon Nanotubes , 1996, Science.

[28]  K. Itoh,et al.  All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber. , 2008, Optics express.

[29]  E. Muñoz,et al.  Production of high-density single-walled nanotube material by a simple laser-ablation method , 1998 .

[30]  R. Nicholas,et al.  Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. , 2007, Nature nanotechnology.

[31]  Wei Zhang,et al.  Wavelength-Switchable and Wavelength-Tunable All-Normal-Dispersion Mode-Locked Yb-Doped Fiber Laser Based on Single-Walled Carbon Nanotube Wall Paper Absorber , 2012, IEEE Photonics Journal.

[32]  Michael J. Bronikowski,et al.  Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study , 2001 .

[33]  Kenneth A. Smith,et al.  Catalytic growth of single-wall carbon nanotubes from metal particles , 1998 .

[34]  Toshiaki Kato,et al.  Diffusion plasma chemical vapour deposition yielding freestanding individual single-walled carbon nanotubes on a silicon-based flat substrate , 2006 .

[35]  F O Marvin THE ARTISTIC ELEMENT IN ENGINEERING. , 1896, Science.

[36]  E. Dianov,et al.  All-bismuth fiber system for femtosecond pulse generation, compression, and energy scaling. , 2015, Optics letters.

[37]  Kenneth E. F. Watt Use of a Computer to Evaluate Alternative Insecticidal Programs , 1961, Science.

[38]  Takeshi Tanaka,et al.  Continuous Separation of Metallic and Semiconducting Carbon Nanotubes Using Agarose Gel , 2009 .

[39]  U. Keller Ultrafast solid-state lasers , 2000, Conference Digest. 2000 Conference on Lasers and Electro-Optics Europe (Cat. No.00TH8505).

[40]  S. Sergeyev,et al.  All-fiber polarization locked vector soliton laser using carbon nanotubes. , 2011, Optics letters.

[41]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[42]  P. Laporta,et al.  Sub-100 fs pump-probe spectroscopy of Single Wall Carbon Nanotubes with a 100 MHz Er-fiber laser system. , 2008, Optics express.

[43]  Shinji Yamashita,et al.  Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing. , 2010, Optics express.

[44]  W. Milne,et al.  Polymer-Assisted Isolation of Single Wall Carbon Nanotubes in Organic Solvents for Optical-Quality Nanotube -Polymer Composites , 2008 .

[45]  M. Jahanshahi,et al.  Fabrication, Purification and Characterization of Carbon Nanotubes: Arc-Discharge in Liquid Media (ADLM) , 2013 .

[46]  I H White,et al.  Wideband-tuneable, nanotube mode-locked, fibre laser. , 2008, Nature nanotechnology.

[47]  S. Turitsyn,et al.  Polarization insensitive in-fiber mode-locker based on carbon nanotube with N-methyl-2-pryrrolidone solvent filled fiber microchamber , 2012 .

[48]  R. Pomraenke,et al.  Exciton binding energies in carbon nanotubes from two-photon photoluminescence , 2005 .

[49]  S. Namiki,et al.  Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker , 2006 .

[50]  Daniel E. Resasco,et al.  A Scalable Process for Production of Single-walled Carbon Nanotubes (SWNTs) by Catalytic Disproportionation of CO on a Solid Catalyst , 2002 .

[51]  J. Shiomi,et al.  Tunable separation of single-walled carbon nanotubes by dual-surfactant density gradient ultracentrifugation , 2011 .

[52]  P. Eklund,et al.  Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes , 1998 .

[53]  W. Milne,et al.  Photoluminescence spectroscopy of carbon nanotube bundles: evidence for exciton energy transfer. , 2007, Physical review letters.

[54]  X. B. Zhang,et al.  A Structure Model and Growth Mechanism for Multishell Carbon Nanotubes , 1995, Science.

[55]  S. Yamashita,et al.  A Tutorial on Nonlinear Photonic Applications of Carbon Nanotube and Graphene , 2012, Journal of Lightwave Technology.

[56]  J W Nicholson,et al.  Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces. , 2007, Optics express.

[57]  Alan M. Cassell,et al.  Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes , 1999 .

[58]  M. Dresselhaus,et al.  Resonance Raman spectra of carbon nanotubes by cross-polarized light. , 2003, Physical review letters.

[59]  Eric A Stach,et al.  Preferential Growth of Single-Walled Carbon Nanotubes with Metallic Conductivity , 2009, Science.

[60]  W. Glenn The fluctuation model of a passively mode-locked laser , 1975 .

[61]  W. J. Liu,et al.  Mode-locked ytterbium fiber lasers using a large modulation depth carbon nanotube saturable absorber without an additional spectral filter , 2014 .

[62]  Jun Wang,et al.  Carbon nanotubes and nanotube composites for nonlinear optical devices , 2009 .

[63]  Michael A. Wilson,et al.  Nanotechnology: Basic Science and Emerging Technologies , 2002 .

[64]  J. Coleman,et al.  Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. , 2006, The journal of physical chemistry. B.

[65]  M. Betz,et al.  Single-beam differential z-scan technique. , 2007, Applied optics.

[66]  John E. Midwinter,et al.  Photonics in switching: the next 25 years of optical communications? , 1992 .

[67]  D. Reid Ultrafast Lasers – Technology and Applications , 2003 .

[68]  James M Tour,et al.  Structure-dependent reactivity of semiconducting single-walled carbon nanotubes with benzenediazonium salts. , 2008, Journal of the American Chemical Society.

[69]  R. Smalley,et al.  Ultrafast carrier dynamics in single-walled carbon nanotubes probed by feintosecond spectroscopy , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[70]  Evgueni M. Dianov,et al.  Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber , 2008 .

[71]  C. Voisin,et al.  Ultrafast carrier dynamics in single-wall carbon nanotubes. , 2003, Physical review letters.

[72]  Zhipei Sun,et al.  Nanotube and graphene saturable absorbers for fibre lasers , 2013, Nature Photonics.

[73]  M. Dresselhaus,et al.  Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons , 1998 .

[74]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[75]  Xueming Liu,et al.  Distributed ultrafast fibre laser , 2015, Scientific Reports.

[76]  M. Fermann,et al.  Nonlinear amplifying loop mirror. , 1990, Optics letters.

[77]  M. Arnold,et al.  Enrichment of single-walled carbon nanotubes by diameter in density gradients. , 2005, Nano letters.

[78]  K. Kieu,et al.  Soliton Thulium-Doped Fiber Laser With Carbon Nanotube Saturable Absorber , 2009, IEEE Photonics Technology Letters.

[79]  Oleg G. Okhotnikov,et al.  Semiconductor mirror for optical noise suppression and dynamic dispersion compensation , 2003 .

[80]  Masako Yudasaka,et al.  Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal , 1997 .

[81]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[82]  J. Gordon,et al.  Theory of passively mode-locked lasers including self-phase modulation and group-velocity dispersion. , 1984, Optics letters.

[83]  Y. Kwak,et al.  Preferential elimination of metallic single-walled carbon nanotubes using microwave irradiation , 2009, Nanotechnology.

[84]  Yuan-Yao Li,et al.  Formation of carbon nanotubes from polyvinyl alcohol using arc-discharge method , 2004 .

[85]  E. Snitzer Optical Maser Action of Nd + 3 in a Barium Crown Glass , 1961 .

[86]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[87]  Jean-Christophe Charlier,et al.  pi-stacking interaction between carbon nanotubes and organic molecules , 2005 .

[88]  Jesper Munch,et al.  Gain-switched holmium-doped fibre laser. , 2009, Optics express.

[89]  J. Maultzsch,et al.  Longitudinal optical phonons in metallic and semiconducting carbon nanotubes. , 2009, Physical review letters.

[90]  Kyeongjae Cho,et al.  Chemical control of nanotube electronics , 2000 .

[91]  Yanrong Song,et al.  A 66 fs highly stable single wall carbon nanotube mode locked fiber laser , 2013 .

[92]  S. Yamashita,et al.  Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. , 2004, Optics letters.

[93]  Etienne Goovaerts,et al.  Efficient Isolation and Solubilization of Pristine Single‐Walled Nanotubes in Bile Salt Micelles , 2004 .

[94]  Stanislaus S. Wong,et al.  Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. , 2008, Journal of the American Chemical Society.

[95]  M. Sennett,et al.  Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes , 2002 .

[96]  H. Ahmad,et al.  Q‐switched Yb‐doped fiber laser operating at 1073 nm using a carbon nanotubes saturable absorber , 2014 .

[97]  S. Louie,et al.  An atlas of carbon nanotube optical transitions. , 2012, Nature nanotechnology.

[98]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[99]  Hiromichi Kataura,et al.  Separations of Metallic and Semiconducting Carbon Nanotubes by Using Sucrose as a Gradient Medium , 2008 .

[100]  P. Ajayan,et al.  Direct Synthesis of Long Single-Walled Carbon Nanotube Strands , 2002, Science.

[101]  A. Kar,et al.  Fastscan z-scan system for determining optical non-linearities in semiconductors , 1997 .

[102]  Zikang Tang,et al.  Superconductivity in 4 Angstrom Single-Walled Carbon Nanotubes , 2001, Science.

[103]  E. W. Stryland,et al.  Characterization of nonlinear optical absorption and refraction , 1993 .

[104]  B. H. Chapman,et al.  Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. , 2013, Optics express.

[105]  Philippe Emplit,et al.  Towards mode-locked fiber laser using topological insulators , 2012 .

[106]  Erich P. Ippen,et al.  Principles of passive mode locking , 1994 .

[107]  W. Ji,et al.  AgInSe2 nanorods: A semiconducting material for saturable absorber , 2007 .

[108]  F. Rohmund,et al.  On the iron-catalysed growth of single-walled carbon nanotubes and encapsulated metal particles in the gas phase , 2000 .

[109]  Sergei K. Turitsyn,et al.  Passively harmonic mode locked erbium doped fiber soliton laser with carbon nanotubes based saturable absorber , 2012 .

[110]  E. Garmire,et al.  Resonant optical nonlinearities in semiconductors , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[111]  Sergei K. Turitsyn,et al.  Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser , 2013, Scientific Reports.

[112]  Takayuki Watanabe,et al.  A new type of arc plasma reactor with 12-phase alternating current discharge for synthesis of carbon nanotubes , 2007 .

[113]  H. Haus Theory of mode locking with a slow saturable absorber , 1975 .

[114]  Shinji Yamashita,et al.  In-situ monitoring of optical deposition of carbon nanotubes onto fiber end. , 2009, Optics express.

[115]  M. Kertész,et al.  The geometry and the radial breathing mode of carbon nanotubes: beyond the ideal behaviour , 2003 .

[116]  H. Dai,et al.  Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasma Enhanced CVD Method , 2004 .

[117]  C. Rao,et al.  Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures , 1998 .

[118]  Chengbo Mou,et al.  High Power Q-Switched Thulium Doped Fibre Laser using Carbon Nanotube Polymer Composite Saturable Absorber , 2016, Scientific Reports.

[119]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[120]  Mark C Hersam,et al.  Processing and properties of highly enriched double-wall carbon nanotubes. , 2009, Nature nanotechnology.

[121]  K. Balasubramanian,et al.  Chemically functionalized carbon nanotubes. , 2005, Small.

[122]  T. Hänsch,et al.  Laser Frequency Combs for Astronomical Observations , 2008, Science.

[123]  S. Kobtsev,et al.  Mode-locked Yb-fiber laser with saturable absorber based on carbon nanotubes , 2011 .

[124]  K. Chow,et al.  Single-walled carbon-nanotube-deposited tapered fiber for four-wave mixing based wavelength conversion , 2010 .

[125]  K. Minoshima,et al.  Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes. , 2005, Optics express.

[126]  T. Pedersen Variational approach to excitons in carbon nanotubes , 2003 .

[127]  Fujita,et al.  Electronic structure of graphene tubules based on C60. , 1992, Physical review. B, Condensed matter.

[128]  Phaedon Avouris,et al.  Carbon-nanotube photonics and optoelectronics , 2008 .

[129]  B. Nalini,et al.  Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy , 2006 .

[130]  Shui-Tong Lee,et al.  Diameter modification of silicon nanowires by ambient gas , 1999 .

[131]  I. Bennion,et al.  Optical Fiber Cavity Ring Down Measurement of Refractive Index With a Microchannel Drilled by Femtosecond Laser , 2009, IEEE Photonics Technology Letters.

[132]  Bharat Bhushan,et al.  Encyclopedia of Nanotechnology , 2012 .

[133]  Shuangchun Wen,et al.  Third order nonlinear optical property of Bi₂Se₃. , 2013, Optics express.

[134]  M. Tokumoto,et al.  Near-infrared nonlinear optical properties of single-wall carbon nanotubes embedded in polymer film , 2004 .

[135]  M. Tokumoto,et al.  Anisotropic saturable absorption of single-wall carbon nanotubes aligned in polyvinyl alcohol , 2005 .

[136]  Joo-Hiuk Son,et al.  A diameter-selective attack of metallic carbon nanotubes by nitronium ions. , 2005, Journal of the American Chemical Society.

[137]  R. Collins,et al.  MODE COMPETITION AND SELF‐LOCKING EFFECTS IN A Q‐SWITCHED RUBY LASER , 1965 .

[138]  Konstantin Golant,et al.  Bismuth fiber integrated laser mode-locked by carbon nanotubes , 2010 .

[139]  Pavel Nikolaev,et al.  Catalytic growth of single-walled manotubes by laser vaporization , 1995 .

[140]  V. Serkin,et al.  Possibility of using self-focusing for increasing contrast and narrowing of ultrashort light pulses , 1975 .

[141]  M. Terrones,et al.  Condensed-phase nanotubes , 1995, Nature.

[142]  Shinji Yamashita,et al.  Deposition of carbon nanotubes around microfiber via evanascent light. , 2009, Optics express.

[143]  A. Lipovskii,et al.  Holmium lasers passively Q-switched with PbS quantum-dot-doped glasses. , 2006, Applied optics.

[144]  C. Hirlimann,et al.  Two-photon excited room-temperature luminescence of CdS in the femtosecond regime , 1999 .

[145]  R. Saito,et al.  Bundle effects of single-wall carbon nanotubes , 2001 .

[146]  Daniel E. Resasco,et al.  Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts , 2000 .

[147]  Shuangchun Wen,et al.  Ultra-short pulse generation by a topological insulator based saturable absorber , 2012 .

[148]  O. Okhotnikov,et al.  Pulse dynamics of a passively mode-locked Bi-doped fiber laser. , 2010, Optics express.

[149]  Masataka Nakazawa,et al.  Polymer saturable absorber materials in the 1.5 microm band using poly-methyl-methacrylate and polystyrene with single-wall carbon nanotubes and their application to a femtosecond laser. , 2006, Optics letters.

[150]  S. Yamashita,et al.  All-fiber pulsed lasers passively mode locked by transferable vertically aligned carbon nanotube film. , 2007, Optics letters.

[151]  M. Zheng,et al.  DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.

[152]  V. M. Castaño,et al.  Chemical functionalization of carbon nanotubes through an organosilane , 2002 .

[153]  K. Chow,et al.  Enhancement of thermal damage threshold of carbon-nanotube-based saturable absorber by evanescent-field interaction on fiber end. , 2013, Optics express.

[154]  Christian Thomsen,et al.  Carbon Nanotubes: Basic Concepts and Physical Properties , 2004 .

[155]  E. Dianov,et al.  Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber , 2012, 2012 38th European Conference and Exhibition on Optical Communications.

[156]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[157]  N. Doran,et al.  Nonlinear-optical loop mirror. , 1988, Optics letters.

[158]  Christoph Lienau,et al.  Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes. , 2005, Physical review letters.

[159]  W. Milne,et al.  Stabilization and Debundling of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP) , 2007 .

[160]  Xia Yu,et al.  Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser. , 2014, Optics express.

[161]  Apostolos Avgeropoulos,et al.  Non-covalent functionalization of carbon nanotubes with polymers , 2014 .

[162]  Zhipei Sun,et al.  Nanotube–Polymer Composites for Ultrafast Photonics , 2009 .

[163]  Yong-Won Song,et al.  Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers , 2011 .

[164]  John A Rogers,et al.  Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. , 2007, Chemical reviews.

[165]  M. C. dos Santos,et al.  Role of surfactants in carbon nanotubes density gradient separation. , 2010, ACS nano.

[166]  Sohrab Ismail-Beigi,et al.  Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. , 2005, Physical review letters.

[167]  M. Jablonski,et al.  Laser mode locking using a saturable absorber incorporating carbon nanotubes , 2004, Journal of Lightwave Technology.

[168]  K. Chow,et al.  A widely tunable wavelength converter based on nonlinear polarization rotation in a carbon-nanotube-deposited D-shaped fiber. , 2009, Optics Express.

[169]  J. F. Stoddart,et al.  Interactions between Conjugated Polymers and Single-Walled Carbon Nanotubes , 2002 .

[170]  T. Miyashita,et al.  Multi-layer LB films of single-wall carbon nanotubes , 2002 .

[171]  A. Dalton,et al.  Ultrafast spectroscopy of excitons in single-walled carbon nanotubes. , 2004, Physical review letters.

[172]  O. Okhotnikov,et al.  Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications , 2004 .

[173]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[174]  R. Smalley,et al.  Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization , 2003, Science.

[175]  J. Taylor,et al.  Scalar Nanosecond Pulse Generation in a Nanotube Mode-Locked Environmentally Stable Fiber Laser , 2014, IEEE Photonics Technology Letters.

[176]  Fauzan Ahmad,et al.  Nanosecond soliton pulse generation by mode-locked erbium-doped fiber laser using single-walled carbon-nanotube-based saturable absorber. , 2012, Applied optics.

[177]  T. Ebbesen,et al.  Mechanism of carbon nanotube formation in the arc discharge. , 1995, Physical review. B, Condensed matter.

[178]  Sumio Iijima,et al.  Growth of carbon nanotubes , 1993 .

[179]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[180]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[181]  S. Fu,et al.  A Wavelength-Switchable Passively Harmonically Mode-Locked Fiber Laser With Low Pumping Threshold Using Single-Walled Carbon Nanotubes , 2010, IEEE Photonics Technology Letters.

[182]  Shuangchun Wen,et al.  Third order nonlinear optical property of Bi2Se3 , 2013 .

[183]  Boris I. Yakobson,et al.  FULLERENE NANOTUBES : C1,000,000 AND BEYOND , 1997 .

[184]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[185]  R. Smalley,et al.  Self-assembly of the fullerenes , 1992 .

[186]  Francisco Pompeo,et al.  Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. , 2003, Journal of the American Chemical Society.

[187]  J. Tour,et al.  Covalent Functionalization of Single-Walled Carbon Nanotubes for Materials Applications , 2004 .

[188]  Andrei S Kurkov,et al.  Tunable Ho-doped soliton fiber laser mode-locked by carbon nanotube saturable absorber , 2012 .

[189]  E. Obraztsova,et al.  Optical properties of polymer films with embedded single‐wall carbon nanotubes , 2007 .

[190]  Hongwei Zhu,et al.  Formation of carbon nanotubes in water by the electric-arc technique , 2002 .

[191]  W. Pompe,et al.  Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation , 2002 .

[192]  Fabian Rotermund,et al.  Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber. , 2009, Optics express.

[193]  Robert H. Hauge,et al.  Purification and Characterization of Single-Wall Carbon Nanotubes (SWNTs) Obtained from the Gas-Phase Decomposition of CO (HiPco Process) , 2001 .

[194]  R. Xiang,et al.  Controllable Expansion of Single-Walled Carbon Nanotube Dispersions Using Density Gradient Ultracentrifugation , 2010 .

[195]  Masud Mansuripur,et al.  Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite. , 2007, Optics letters.

[196]  Ian Bennion,et al.  In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing. , 2008, Optics express.

[197]  Feng Ding,et al.  Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts , 2014, Nature.

[198]  S. Zeeshan,et al.  Sublimation of graphite in continuous and pulsed arc discharges , 2010, Turkish Journal of Physics.

[199]  R. Smalley,et al.  Raman modes of metallic carbon nanotubes , 1998 .

[200]  M. Chan-Park,et al.  Aggregation-Dependent Photoluminescence Sidebands in Single-Walled Carbon Nanotube , 2010 .

[201]  Ian H. White,et al.  Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers , 2008 .

[202]  Identification of an excitonic phonon sideband by photoluminescence spectroscopy of single-walled carbon-13 nanotubes , 2005, cond-mat/0508232.

[203]  John Robertson,et al.  Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. , 2006, Nano letters.

[204]  Chengbo Mou,et al.  Vector solitons with locked and precessing states of polarization. , 2012, Optics express.

[205]  Philip B. Chapple,et al.  Z-scan studies in the thin- and the thick-sample limits , 1994 .

[206]  Larry R. Dalton,et al.  Polymer-based optical waveguides: Materials, processing, and devices , 2002 .

[207]  E. Warburg A Flora of Cambridgeshire , 1940, Nature.

[208]  H. Kataura,et al.  Optical and Conductive Characteristics of Metallic Single-Wall Carbon Nanotubes with Three Basic Colors; Cyan, Magenta, and Yellow , 2008 .

[209]  Otto Zhou,et al.  Plasma-induced alignment of carbon nanotubes , 2000 .

[210]  H. Inoue,et al.  Photoreduction of polyhalogenated anthraquinones by direct electron transfer from alcohol , 1983 .

[211]  K. Itoh,et al.  Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film. , 2009, Optics express.

[212]  Chin-Yi Liaw,et al.  Short linear-cavity Q-switched fiber laser with a compact short carbon nanotube based saturable absorber , 2011 .

[213]  Masako Yudasaka,et al.  Mechanism of the Effect of NiCo, Ni and Co Catalysts on the Yield of Single-Wall Carbon Nanotubes Formed by Pulsed Nd:YAG Laser Ablation , 1999 .

[214]  M. Nakazawa,et al.  A 113 fs fiber laser operating at 1.56 mum using a cascadable film-type saturable absorber with P3HT-incorporated single-wall carbon nanotubes coated on polyamide. , 2010, Optics express.

[215]  Masa Ishigami,et al.  A simple method for the continuous production of carbon nanotubes , 2000 .

[216]  T. Sajavaara,et al.  Self-starting stretched-pulse fiber laser mode locked and stabilized with slow and fast semiconductor saturable absorbers. , 2001, Optics letters.

[217]  V. Letokhov,et al.  Fluctuation mechanism of ultrashort pulse generation by laser with saturable absorber , 1972 .

[218]  J J M Braat,et al.  High-accuracy long-distance measurements in air with a frequency comb laser. , 2009, Optics letters.

[219]  A. Striolo,et al.  SDS surfactants on carbon nanotubes: aggregate morphology. , 2009, ACS nano.

[220]  Rachel Grange,et al.  Low-loss GaInNAs saturable absorber mode locking a 1.3-μm solid-state laser , 2004 .

[221]  Irl N. Duling,et al.  Compact Sources of Ultrashort Pulses , 1995 .

[222]  D. Resasco,et al.  Relationship between the Structure/Composition of Co-Mo Catalysts and Their Ability to Produce Single-Walled Carbon Nanotubes by CO Disproportionation , 2001 .

[223]  Samuli Kivistö,et al.  Carbon nanotube films for ultrafast broadband technology. , 2009, Optics express.

[224]  M. Strano,et al.  Selective Functionalization and Free Solution Electrophoresis of Single-Walled Carbon Nanotubes: Separate Enrichment of Metallic and Semiconducting SWNT , 2007 .

[225]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[226]  M. Keidar,et al.  A model of carbon nanotube synthesis in arc discharge plasmas , 2012 .

[227]  Alan M. Cassell,et al.  Chemical vapor deposition of methane for single-walled carbon nanotubes , 1998 .

[228]  Chengbo Mou,et al.  Higher-Order Soliton Generation in Hybrid Mode-Locked Thulium-Doped Fiber Ring Laser , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[229]  O. Jost,et al.  High‐yield synthesis of single‐walled carbon nanotubes with a pulsed arc‐discharge technique , 2007 .

[230]  M. Dresselhaus,et al.  Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects. , 2004, Physical review letters.

[231]  L. Casperson,et al.  Principles of lasers , 1983, IEEE Journal of Quantum Electronics.

[232]  Minquan Tian,et al.  Semiconductor Carbon Nanotubes as Ultrafast Switching Materials for Optical Telecommunications , 2003 .

[233]  J. R. Taylor,et al.  Nanosecond-pulse fiber lasers mode-locked with nanotubes , 2009 .

[234]  S. Suzuki,et al.  Neutral carbon cluster distribution upon laser vaporization , 1997 .

[235]  J. Fraser Stoddart,et al.  Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes , 2001 .

[236]  M. Dresselhaus,et al.  Stokes and anti-Stokes Raman spectra of small-diameter isolated carbon nanotubes , 2004 .

[237]  K. Kikuchi,et al.  Femtosecond mode-locking of a ytterbium-doped fiber laser using a carbon-nanotube-based mode-locker with ultra-wide absorption band , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[238]  Y. Sakakibara,et al.  Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[239]  I. White,et al.  Sub-ps erbium doped fiber laser with nanotube mode-locker , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[240]  Pavel Nikolaev,et al.  Electronically excited C2 from laser photodissociated C60 , 2000 .

[241]  K. Hata,et al.  Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes , 2004, Science.

[242]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[243]  E. Dianov,et al.  177fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes , 2008 .

[244]  F. Wise,et al.  All-fiber normal-dispersion femtosecond laser. , 2008, Optics express.

[245]  Alan M. Cassell,et al.  Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers , 1998, Nature.