On transform-domain error and erasure correction by Gabidulin codes

Gabidulin codes are the rank metric analogues of Reed–Solomon codes and have found many applications including network coding. In this paper, we propose a transform-domain algorithm correcting both errors and erasures with Gabidulin codes. Interleaving or the direct sum of Gabidulin codes allows both decreasing the redundancy and increasing the error correcting capability for network coding. We generalize the proposed decoding algorithm for interleaved Gabidulin codes. The transform-domain approach allows to simplify derivations and proofs and also simplifies finding the error vector after solving the key equation.

[1]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.

[2]  V. Sidorenko,et al.  On transform – domain decoding of Gabidulin codes , 2013 .

[3]  Vladimir Sidorenko,et al.  Fast decoding of Gabidulin codes , 2011, Des. Codes Cryptogr..

[4]  Raphael Overbeck,et al.  Public key cryptography based on coding theory , 2007 .

[5]  Simon Plass,et al.  Fast decoding of rank-codes with rank errors and column erasures , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[6]  Ernst M. Gabidulin,et al.  Error and erasure correcting algorithms for rank codes , 2008, Des. Codes Cryptogr..

[7]  Ron M. Roth,et al.  Author's Reply to Comments on 'Maximum-rank array codes and their application to crisscross error correction' , 1991, IEEE Trans. Inf. Theory.

[8]  Pierre Loidreau Decoding rank errors beyond the error-correcting capability , 2006 .

[9]  Martin Bossert,et al.  Fast skew-feedback shift-register synthesis , 2012, Designs, Codes and Cryptography.

[10]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[11]  Martin Bossert,et al.  Linearized Shift-Register Synthesis , 2011, IEEE Transactions on Information Theory.

[12]  Pierre Loidreau,et al.  A Welch-Berlekamp Like Algorithm for Decoding Gabidulin Codes , 2005, WCC.

[13]  O. Ore Theory of Non-Commutative Polynomials , 1933 .

[14]  Maximilien Gadouleau,et al.  Complexity of decoding Gabidulin codes , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[15]  Martin Bossert,et al.  Skew-Feedback Shift-Register Synthesis and Decoding Interleaved Gabidulin Codes , 2011, IEEE Transactions on Information Theory.

[16]  Frank R. Kschischang,et al.  Fast encoding and decoding of Gabidulin codes , 2009, 2009 IEEE International Symposium on Information Theory.

[17]  Alexander Zeh,et al.  List and unique error-erasure decoding of interleaved Gabidulin codes with interpolation techniques , 2014, Des. Codes Cryptogr..

[18]  H. Keng,et al.  A THEOREM ON MATRICES OVER A SFIELD AND ITS APPLICATIONS , 1951 .