Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer

Efficiently entangling pairs of qubits is essential to fully harness the power of quantum computing. Here, we devise an exact protocol that simultaneously entangles arbitrary pairs of qubits on a trapped-ion quantum computer. The protocol requires classical computational resources polynomial in the system size, and very little overhead in the quantum control compared to a single-pair case. We demonstrate an exponential improvement in both classical and quantum resources over the current state of the art. We implement the protocol on a software-defined trapped-ion quantum computer, where we reconfigure the quantum computer architecture on demand. Our protocol may also be extended to a wide variety of other quantum computing platforms. Here, the authors devise an exact protocol that simultaneously entangles arbitrary pairs of qubits on a trapped-ion quantum computer. The protocol requires classical computational resources polynomial in the system size, and very little overhead in the quantum control compared to a single-pair case.

[1]  Thomas G. Draper,et al.  A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..

[2]  Matthias M. Müller,et al.  Prospects for fast Rydberg gates on an atom chip , 2011, Quantum Inf. Process..

[3]  C Figgatt,et al.  Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. , 2014, Physical review letters.

[4]  Dmitri Maslov,et al.  Use of global interactions in efficient quantum circuit constructions , 2017, ArXiv.

[5]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[6]  Yun Seong Nam,et al.  Power-optimal, stabilized entangling gate between trapped-ion qubits , 2019, npj Quantum Information.

[7]  Caroline Figgatt,et al.  Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force. , 2017, Physical review letters.

[8]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[9]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[10]  G. Amdhal,et al.  Validity of the single processor approach to achieving large scale computing capabilities , 1967, AFIPS '67 (Spring).

[11]  R. Feynman Simulating physics with computers , 1999 .

[12]  Emanuel Knill,et al.  High Fidelity Universal Gate Set for 9Be+ Ion Qubits | NIST , 2016 .

[13]  J. M. Gambetta,et al.  Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator , 2010, 1011.1949.

[14]  V. Bergholm,et al.  Optimal control of coupled Josephson qubits , 2005, quant-ph/0504202.

[15]  Dmitri Maslov,et al.  Ground-state energy estimation of the water molecule on a trapped ion quantum computer , 2019, ArXiv.

[16]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[17]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[18]  Stéphane Beauregard Circuit for Shor's algorithm using 2n+3 qubits , 2003, Quantum Inf. Comput..

[19]  Wentao Chen,et al.  Global entangling gates on arbitrary ion qubits , 2019, Nature.

[20]  J. D. Wong-Campos,et al.  Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.

[21]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[22]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[23]  Igor L. Markov,et al.  Minimal universal two-qubit controlled-NOT-based circuits (8 pages) , 2004 .

[24]  M. Saffman,et al.  High-fidelity Rydberg-blockade entangling gate using shaped, analytic pulses , 2016, 1605.08891.

[25]  Dmitri Maslov,et al.  Low-cost quantum circuits for classically intractable instances of the Hamiltonian dynamics simulation problem , 2018, npj Quantum Information.

[26]  Shi-Liang Zhu,et al.  Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams , 2006 .

[27]  Dmitri Maslov,et al.  Parallel entangling operations on a universal ion-trap quantum computer , 2018, Nature.

[28]  Mark Um,et al.  Single-qubit quantum memory exceeding ten-minute coherence time , 2017, 1701.04195.

[29]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[30]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[31]  Dmitri Maslov,et al.  An Outlook for Quantum Computing [Point of View] , 2019, Proc. IEEE.

[32]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[33]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[34]  Sophia E. Economou,et al.  Fast high-fidelity entangling gates for spin qubits in Si double quantum dots , 2019, Physical Review B.

[35]  Sean Hallgren,et al.  Quantum algorithms for some hidden shift problems , 2003, SODA '03.