In Situ Raman Study of Graphite Negative-Electrodes in Electrolyte Solution Containing Fluorinated Phosphoric Esters

[1]  F. S. Mortimer Vibrational assignment and rotational isomerism in some simple organic phosphates , 1957 .

[2]  T. Nakajima,et al.  Electrochemical Behavior of Nonflammable Organo-Fluorine Compounds for Lithium Ion Batteries , 2009 .

[3]  Minoru Inaba,et al.  In situ Raman study on electrochemical Li intercalation into graphite , 1995 .

[4]  Kang Xu,et al.  An Attempt to Formulate Nonflammable Lithium Ion Electrolytes with Alkyl Phosphates and Phosphazenes , 2002 .

[5]  M. Inaba,et al.  In situ Raman study of electrochemical lithium insertion into mesocarbon microbeads heat-treated at various temperatures , 1996 .

[6]  Takeshi Abe,et al.  In situ Raman study on degradation of edge plane graphite negative-electrodes and effects of film-forming additives , 2012 .

[7]  Petr Novák,et al.  In situ study on CO2 evolution at lithium-ion battery cathodes , 2006 .

[8]  R. Kostecki,et al.  Electrochemical and Infrared Studies of the Reduction of Organic Carbonates , 2001 .

[9]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[10]  G. Nazri,et al.  Raman Spectra and Transport Properties of Lithium Perchlorate in Ethylene Carbonate Based Binary Solvent Systems for Lithium Batteries , 1998 .

[11]  G. Nazri,et al.  Vibrational studies of lithium perchlorate in propylene carbonate solutions , 1993 .

[12]  E. Yasukawa,et al.  Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: I. Fundamental Properties , 2001 .

[13]  Nobuhiro Ogihara,et al.  Nonflammable Hydrofluoroether for Lithium-Ion Batteries: Enhanced Rate Capability, Cyclability, and Low-Temperature Performance , 2009 .

[14]  G. Lucovsky,et al.  Infrared active optical vibrations of graphite , 1977 .

[15]  Kang Xu,et al.  Evaluation of Fluorinated Alkyl Phosphates as Flame Retardants in Electrolytes for Li-Ion Batteries: II. Performance in Cell , 2003 .

[16]  Takeshi Abe,et al.  In situ Raman study on the structural degradation of a graphite composite negative-electrode and the influence of the salt in the electrolyte solution , 2013 .

[17]  Kang Xu,et al.  Evaluation of Fluorinated Alkyl Phosphates as Flame Retardants in Electrolytes for Li-Ion Batteries: I. Physical and Electrochemical Properties , 2003 .

[18]  Kang Xu,et al.  Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate , 2002 .

[19]  A. Simon,et al.  Die Raman-Spektren der Verbindungen POCl3, PSCl3, PO(OCH3)3, PS(OCH3)3 , 1937, Naturwissenschaften.

[20]  S. Moon,et al.  Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive , 2007 .

[21]  Shoji Yamaguchi,et al.  Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode , 2004 .

[22]  P. Novák,et al.  Behaviour of highly crystalline graphitic materials in lithium-ion cells with propylene carbonate containing electrolytes: An in situ Raman and SEM study , 2007 .

[23]  K. Amine,et al.  Flame-retardant additives for lithium-ion batteries , 2003 .

[24]  Hiroe Nakagawa,et al.  Application of Nonflammable Electrolytes to High Performance Lithium-ion Cells , 2010 .

[25]  H. Tsunekawa,et al.  Solvation and Ion Association Studies of LiBF4−Propylenecarbonate and LiBF4−Propylenecarbonate−Trimethyl Phosphate Solutions , 2003 .

[26]  Takeshi Abe,et al.  Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte , 2004 .

[27]  M. Ishikawa,et al.  A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts , 1998 .

[28]  T. Abe,et al.  Electrochemical Raman study of edge plane graphite negative-electrodes in electrolytes containing trialkyl phosphoric ester , 2012 .

[29]  R. Frech,et al.  In Situ Roman Studies of Graphite Surface Structures during Lithium Electrochemical Intercalation , 1998 .

[30]  Kang Xu,et al.  Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries , 2003 .

[31]  Chusheng Chen,et al.  Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries , 2005 .

[32]  T. Abe,et al.  In Situ AFM Study of Surface Film Formation on the Edge Plane of HOPG for Lithium-Ion Batteries , 2011 .

[33]  K. Adachi,et al.  Polymeric gel electrolyte containing alkyl phosphate for lithium-ion batteries , 2005 .