Electromechanical properties of PZT/P(VDF-TrFE) composite ink printed on a flexible organic substrate

Abstract The fabrication and electromechanical properties of composite inks consisting of 30–70 vol.% of piezoceramic PZT powder and piezoelectric co-polymer P(VDF-TrFE) are presented. Samples were stencil-printed on a commercial PET film and printable silver ink was used for the electrodes thus allowing a maximum process temperature of 130 °C. The relative permittivity at 1 kHz varied between 33 and 69 depending on poling and composite composition. The highest remanent polarization, up to 4.8 μC/cm2, with 34 MV/m electric field and piezoelectric coefficient d31 up to 17 pm/V, was obtained with a 50 vol.% PZT loading level. The mechanical and electrical results indicate that the developed composite ink enables fully printable and flexible sensor applications with an increased level of integration.

[1]  M. Es-Souni,et al.  Thick film polymer-ceramic composites for pyroelectric applications , 2007 .

[2]  Y. Akiyama,et al.  Fabrication of Lead Zirconate Titanate Films by Inkjet Printing , 2012 .

[3]  K. Sivanandan,et al.  Fabrication and Tunable Dielectric Properties of (Ba0.7Sr0.3)TiO3-Glass-Based Thick-Film Capacitors , 2009 .

[4]  H. Ohigashi,et al.  Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers , 1986 .

[5]  斉藤 政浩,et al.  The piezoelectric ceramic , 1993 .

[6]  Pailyn Thongsanitgarn,et al.  ELECTRICAL AND MECHANICAL PROPERTIES OF PZT/PVDF 0–3 COMPOSITES , 2010 .

[7]  S. Bauer,et al.  An All‐Printed Ferroelectric Active Matrix Sensor Network Based on Only Five Functional Materials Forming a Touchless Control Interface , 2011, Advanced materials.

[8]  Clive A. Randall,et al.  High field properties and energy storage in nanocomposite dielectrics of poly(vinylidene fluoride-hexafluoropropylene) , 2011 .

[9]  J. C. Brewer,et al.  Preparation process and dielectric properties of Ba0.5Sr0.5TiO3–P(VDF–CTFE) nanocomposites , 2014 .

[10]  Zhijun Hu,et al.  Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. , 2009, Nature materials.

[11]  C. Choy,et al.  Poling study of PZT/P(VDF–TrFE) composites , 2001 .

[12]  K. W. Wang,et al.  Piezoelectric polymers actuators for precise shape control of large scale space antennas , 2007, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[13]  M. Cocuzza,et al.  Different scale confinements of PVDF-TrFE as functional material of piezoelectric sensor devices , 2012, 2012 IEEE Sensors.

[14]  L. E. Cross,et al.  Electromechanical coupling and output efficiency of piezoelectric bending actuators , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[15]  Arved C. Hübler,et al.  Fully mass printed loudspeakers on paper , 2012 .

[16]  Shuhui Yu,et al.  Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites , 2011 .

[17]  R. Muller,et al.  Polymer and Organic Nonvolatile Memory Devices , 2011 .

[18]  Voya R. Markovich,et al.  Printable electronics: towards materials development and device fabrication , 2011 .

[19]  C. Wen,et al.  Dielectric and piezoelectric properties of 0-3 PZT/PVDF composite doped with polyaniline , 2006 .

[20]  J. Ou,et al.  PZT/PVDF composites doped with carbon nanotubes , 2013 .

[21]  Heli Jantunen,et al.  Polymer–Ceramic Composites of 0–3 Connectivity for Circuits in Electronics: A Review , 2010 .

[22]  Khalil Arshak,et al.  Development of new capacitive strain sensors based on thick film polymer and cermet technologies , 2000 .

[23]  Haisheng Xu,et al.  Electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymers , 2001 .

[24]  Juha Virtanen,et al.  Inkjet-Printed Humidity Sensor for Passive UHF RFID Systems , 2011, IEEE Transactions on Instrumentation and Measurement.

[25]  Mohammed Es-Souni,et al.  Structural and functional properties of screen-printed PZT–PVDF-TrFE composites , 2008 .

[26]  Jari Juuti,et al.  Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression , 2012, Journal of Electroceramics.

[27]  Se Hyun Kim,et al.  Electrolyte‐Gated Transistors for Organic and Printed Electronics , 2013, Advanced materials.

[28]  Wolfgang Kowalsky,et al.  Large Area Electronics Using Printing Methods , 2005, Proceedings of the IEEE.

[29]  Yuan jie,et al.  Structural and Electrical Properties of PZT/PVDF Piezoelectric Nanocomposites Prepared by Cold-Press and Hot-Press Routes , 2008 .

[30]  M. A. Zaghete,et al.  Lead Titanate-Based Nanocomposite: Fabrication, Characterization and Application and Energy Conversion Evaluation , 2011 .

[31]  E. Fukada,et al.  Crystalline phase transition in the copolymer of vinylidenefluoride and trifluoroethylene , 1980 .

[32]  N. Setter,et al.  Development of relaxor ferroelectric materials for screen-printing on alumina and silicon substrates , 2005 .

[33]  J. Juuti,et al.  Method to characterize dielectric properties of powdery substances , 2013 .

[34]  Nicolae Barsan,et al.  Capacitive Humidity Sensors on Flexible RFID Labels , 2007 .

[35]  K. Lam,et al.  Piezoelectric and pyroelectric properties of (Bi 0.5Na 0.5) 0.94Ba 0.06TiO 3/P(VDF-TrFE) 0–3 composites , 2005 .

[36]  N. Bârsan,et al.  Making environmental sensors on plastic foil , 2011 .

[37]  A. Safari,et al.  Piezoelectric and Acoustic Materials for Transducer Applications , 2008 .

[38]  Li Yang,et al.  Conductive Inkjet-Printed Antennas on Flexible Low-Cost Paper-Based Substrates for RFID and WSN Applications , 2009, IEEE Antennas and Propagation Magazine.

[39]  Yongxing Shen,et al.  Dielectric behavior of three-phase percolative Ni–BaTiO3/polyvinylidene fluoride composites , 2002 .

[40]  K. Lam,et al.  Piezoelectric and pyroelectric properties of 65PMN-35PT/P(VDF-TrFE) 0-3 composites , 2005 .

[41]  Bernd Ploss,et al.  Dielectric nonlinearity of PVDF–TrFE copolymer , 2000 .