Distinguishing between hot-spots and melting-pots of genetic diversity using haplotype connectivity

We introduce a method to help identify how the genetic diversity of a species within a geographic region might have arisen. This problem appears, for example, in the context of identifying refugia in phylogeography, and in the conservation of biodiversity where it is a factor in nature reserve selection. Complementing current methods for measuring genetic diversity, we analyze pairwise distances between the haplotypes of a species found in a geographic region and derive a quantity, called haplotype connectivity, that aims to capture how divergent the haplotypes are relative to one another. We propose using haplotype connectivity to indicate whether, for geographic regions that harbor a highly diverse collection of haplotypes, diversity evolved inside a region over a long period of time (a "hot-spot") or is the result of a more recent mixture (a "melting-pot"). We describe how the haplotype connectivity for a collection of haplotypes can be computed efficiently and briefly discuss some related optimization problems that arise in this context. We illustrate the applicability of our method using two previously published data sets of a species of beetle from the genus Brachyderes and a species of tree from the genus Pinus.

[1]  Abraham P. Punnen,et al.  The bottleneck k-MST , 2005, Inf. Process. Lett..

[2]  Daniel H. Huson,et al.  Disk-Covering, a Fast-Converging Method for Phylogenetic Tree Reconstruction , 1999, J. Comput. Biol..

[3]  M. Weitzman The Noah's Ark Problem , 1998 .

[4]  V. Eguíluz,et al.  Spectrum of genetic diversity and networks of clonal organisms , 2006, Journal of The Royal Society Interface.

[5]  Pierre Hansen,et al.  Dispersing Facilities on a Network , 1995 .

[6]  Nick Goldman,et al.  Species Choice for Comparative Genomics: Being Greedy Works , 2005, PLoS genetics.

[7]  L. Excoffier,et al.  Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. , 1999, Genetics.

[8]  J. Neigel,et al.  Intraspecific Phylogeography: The Mitochondrial DNA Bridge Between Population Genetics and Systematics , 1987 .

[9]  M. Nei,et al.  DNA polymorphism detectable by restriction endonucleases. , 1981, Genetics.

[10]  D. Faith Conservation evaluation and phylogenetic diversity , 1992 .

[11]  Arnold Schönhage,et al.  Finding the Median , 1976, J. Comput. Syst. Sci..

[12]  Anne Berry,et al.  Maximal sub-triangulation in pre-processing phylogenetic data , 2003, Soft Comput..

[13]  K. Crandall,et al.  TCS: a computer program to estimate gene genealogies , 2000, Molecular ecology.

[14]  Harold N. Gabow Using expander graphs to find vertex connectivity , 2006, JACM.

[15]  G. Hewitt The genetic legacy of the Quaternary ice ages , 2000, Nature.

[16]  G. Vendramin,et al.  Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait. , 1998 .

[17]  Madhu Sudan,et al.  The minimum latency problem , 1994, STOC '94.

[18]  Yaneer Bar-Yam,et al.  Theory predicts the uneven distribution of genetic diversity within species , 2004, Nature.

[19]  Robert E. Tarjan,et al.  Network Flow and Testing Graph Connectivity , 1975, SIAM J. Comput..

[20]  L Lacey Knowles,et al.  Why Does a Method That Fails Continue to be Used? , 2008, Evolution; international journal of organic evolution.

[21]  Templeton,et al.  Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history , 1998, Molecular ecology.

[22]  L. Excoffier Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite‐island model , 2004, Molecular ecology.

[23]  M. Nei,et al.  Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. , 1993, Molecular biology and evolution.

[24]  R. Terauchi,et al.  Intragenic recombination in the Adh locus of the wild plant Arabidopsis thaliana. , 1996, Genetics.

[25]  R. Petit,et al.  Glacial Refugia: Hotspots But Not Melting Pots of Genetic Diversity , 2003, Science.

[26]  R L Pressey,et al.  Integrating biosystematic data into conservation planning: perspectives from southern Africa's Succulent Karoo. , 2002, Systematic biology.

[27]  F. Tajima The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. , 1996, Genetics.

[28]  Carito Guziolowski,et al.  Algorithms for Molecular Biology , 2007 .

[29]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[30]  K. Crandall,et al.  Nested clade analysis statistics , 2006 .

[31]  V. Moulton,et al.  Computing Phylogenetic Diversity for Split Systems , 2008, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[32]  R. Alía,et al.  Range‐wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers , 2007, Molecular ecology.

[33]  Bui Quang Minh,et al.  Taxon Selection under Split Diversity. , 2009, Systematic biology.

[34]  G. Vendramin,et al.  Distribution of genetic diversity in Pinus pinaster Ait. as revealed by chloroplast microsatellites , 1998, Theoretical and Applied Genetics.

[35]  Helen M. Regan,et al.  Species prioritization for monitoring and management in regional multiple species conservation plans , 2007, Diversity & distributions.

[36]  M. Steel,et al.  Phylogenetic diversity: from combinatorics to ecology , 2007 .

[37]  A. Templeton Using phylogeographic analyses of gene trees to test species status and processes , 2001, Molecular ecology.

[38]  Paolo M. Camerini The Min-Max Spanning Tree Problem and Some Extensions , 1978, Inf. Process. Lett..

[39]  Ingolf Kühn,et al.  A comparative test of phylogenetic diversity indices , 2008, Oecologia.

[40]  David Pisinger,et al.  Upper bounds and exact algorithms for p-dispersion problems , 2006, Comput. Oper. Res..

[41]  B. Emerson,et al.  Testing phylogeographic predictions on an active volcanic island: Brachyderes rugatus (Coleoptera: Curculionidae) on La Palma (Canary Islands) , 2005, Molecular ecology.

[42]  Y. Bar-Yam,et al.  Estimating the total genetic diversity of a spatial field population from a sample and implications of its dependence on habitat area. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  G. Hewitt Some genetic consequences of ice ages, and their role in divergence and speciation , 1996 .

[44]  Mike Steel,et al.  Phylogenetic diversity and the greedy algorithm. , 2005, Systematic biology.