Parameter extraction of solar cell models using chaotic asexual reproduction optimization

To simulate solar cell systems or to optimize photovoltaic (PV) system performance, the estimation of solar cell model parameters is extremely crucial. In this paper, the parameter extraction of solar cell models is formalized as a multi-dimensional optimization problem, and an objective function is established minimizing the errors between the estimated and measured data. A novel chaotic asexual reproduction optimization (CARO) using chaotic sequence for global search is applied to this parameter extraction problem. All the seven or five parameters of solar cell models are extracted simultaneously using measured input–output data. The CARO has been tested with different solar cell models, i.e., double diode, single diode, and PV module. Comparison simulation results with other parameter extraction techniques show that the CARO signifies its potential as another optional method.

[1]  W. Choi,et al.  A novel parameter extraction method for the one-diode solar cell model , 2010 .

[2]  Taha Mansouri,et al.  ARO: A new model-free optimization algorithm inspired from asexual reproduction , 2010, Appl. Soft Comput..

[3]  Giacomo Capizzi,et al.  A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module , 2012, ArXiv.

[4]  Mohammad Bagher Menhaj,et al.  Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization , 2011 .

[5]  Hassan Fathabadi,et al.  Novel neural-analytical method for determining silicon/plastic solar cells and modules characteristics , 2013 .

[6]  Zhanshan Ma,et al.  Chaotic populations in genetic algorithms , 2012, Appl. Soft Comput..

[7]  E. Muljadi,et al.  A cell-to-module-to-array detailed model for photovoltaic panels , 2012 .

[8]  Jae Hyun Kim,et al.  Extraction of diode parameters of silicon solar cells under high illumination conditions , 2013 .

[9]  Mohammad Bagher Menhaj,et al.  Control of leader-follower formation and path planning of mobile robots using Asexual Reproduction Optimization (ARO) , 2014, Appl. Soft Comput..

[10]  Keiji Tatsumi,et al.  A chaotic particle swarm optimization exploiting a virtual quartic objective function based on the personal and global best solutions , 2013, Appl. Math. Comput..

[11]  Hui Wang,et al.  Improved parallel chaos optimization algorithm , 2012, Appl. Math. Comput..

[12]  Yifeng Chen,et al.  Parameters extraction from commercial solar cells I-V characteristics and shunt analysis , 2011 .

[13]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[14]  Abderrezak Guessoum,et al.  A simple behavioural model for solar module electric characteristics based on the first order system step response for MPPT study and comparison , 2012 .

[15]  Mutlu Boztepe,et al.  Neural network based solar cell model , 2006 .

[16]  H. Bayhan,et al.  A simple approach to determine the solar cell diode ideality factor under illumination , 2011 .

[17]  Shu-xian Lun,et al.  A new explicit I–V model of a solar cell based on Taylor’s series expansion , 2013 .

[18]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[19]  F. Ghani,et al.  Numerical calculation of series and shunt resistance of a photovoltaic cell using the Lambert W-function: Experimental evaluation , 2013 .

[20]  Javier Cubas,et al.  On the analytical approach for modeling photovoltaic systems behavior , 2014 .

[21]  F. Ghani,et al.  Numerical calculation of series and shunt resistances and diode quality factor of a photovoltaic cell using the Lambert W-function , 2013 .

[22]  Lele Peng,et al.  A new method for determining the characteristics of solar cells , 2013 .

[23]  Yan Wang,et al.  Gravitational search algorithm combined with chaos for unconstrained numerical optimization , 2014, Appl. Math. Comput..

[24]  Adil Baykasoglu,et al.  Design optimization with chaos embedded great deluge algorithm , 2012, Appl. Soft Comput..

[25]  Jagdish C. Patra,et al.  Neural network‐based model for dual‐junction solar cells , 2011 .

[26]  Taha Mansouri,et al.  ARO: A new model free optimization algorithm for real time applications inspired by the asexual reproduction , 2011, Expert Syst. Appl..

[27]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[28]  Benjamin Y. H. Liu,et al.  The interrelationship and characteristic distribution of direct, diffuse and total solar radiation , 1960 .

[29]  M. Chegaar,et al.  New method to extract the parameters of solar cells from their illuminated I-V curve , 2007 .

[30]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[31]  M. Chegaar,et al.  Organic and inorganic solar cells parameters evaluation from single I–V plot , 2008 .

[32]  Guangyu Liu,et al.  A general modeling method for I–V characteristics of geometrically and electrically configured photovoltaic arrays , 2011 .

[33]  J C Patra,et al.  Chebyshev Neural Network-Based Model for Dual-Junction Solar Cells , 2011, IEEE Transactions on Energy Conversion.

[34]  Jilei Zhou,et al.  Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization , 2014, Commun. Nonlinear Sci. Numer. Simul..

[35]  Shu-xian Lun,et al.  An explicit approximate I–V characteristic model of a solar cell based on padé approximants , 2013 .

[36]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[37]  Alessandra Di Gangi,et al.  A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data , 2013 .

[38]  Qiaoyan Wen,et al.  Chaotic ant swarm optimization with passive congregation , 2012 .

[39]  Bilal Alatas,et al.  Chaotic harmony search algorithms , 2010, Appl. Math. Comput..

[40]  Meiying Ye,et al.  Parameter extraction of solar cells using particle swarm optimization , 2009 .

[41]  M. F. AlHajri,et al.  A new estimation approach for determining the I–V characteristics of solar cells , 2011 .

[42]  Huang Wei,et al.  Extracting solar cell model parameters based on chaos particle swarm algorithm , 2011, 2011 International Conference on Electric Information and Control Engineering.

[43]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[44]  A. Das Analytical derivation of explicit J–V model of a solar cell from physics based implicit model , 2012 .