Computability and complexity of ray tracing
暂无分享,去创建一个
[1] Andrew S. Glassner,et al. An introduction to ray tracing , 1989 .
[2] D. Bradley. Modern Optics , 1968, Nature.
[3] Turner Whitted,et al. An improved illumination model for shaded display , 1979, CACM.
[4] Moore,et al. Unpredictability and undecidability in dynamical systems. , 1990, Physical review letters.
[5] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[6] R. Feynman. QED: The Strange Theory of Light and Matter , 1985 .
[7] Eugene Fiume,et al. The Mathematical Structure of Raster Graphics , 1989 .
[8] Isaac Sir Newton. Opticks, or, A treatise of the reflections, refractions, inflections & colours of light , 1933 .
[9] Charles H. Bennett,et al. Logical reversibility of computation , 1973 .
[10] C. Boldrighini,et al. Billiards in Polygons , 1978 .
[11] Charles H. Bennett. Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..
[12] Walter J. Savitch,et al. Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..
[13] Pat Hanrahan,et al. Ray tracing algebraic surfaces , 1983, SIGGRAPH.
[14] 守屋 悦朗,et al. J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .
[15] J. Yorke,et al. Period Three Implies Chaos , 1975 .
[16] J. Doug Tygar,et al. The computability and complexity of optical beam tracing , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.
[17] Keigo Iizuka,et al. Engineering Optics , 1985 .
[18] E. H. Linfoot. Principles of Optics , 1961 .
[19] M. W. Shields. An Introduction to Automata Theory , 1988 .
[20] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[21] Bui Tuong Phong. Illumination for computer generated pictures , 1975, Commun. ACM.
[22] J. Franklin. Deterministic Simulation of Random Processes , 1963 .
[23] Alan Watt,et al. Fundamentals of three-dimensional computer graphics , 1989 .
[24] J. Smillie,et al. A rational billiard flow is uniquely ergodic in almost every direction , 1985 .
[25] D P Greenberg,et al. Light Reflection Models for Computer Graphics , 1989, Science.
[26] J. O'Rourke. Art gallery theorems and algorithms , 1987 .