BNT162b2-induced memory T cells respond to the Omicron variant with preserved polyfunctionality

[1]  P. Österlund,et al.  Neutralizing antibodies to SARS‐CoV‐2 Omicron variant after third mRNA vaccination in health care workers and elderly subjects , 2022, European journal of immunology.

[2]  N. Dean,et al.  The changing epidemiology of SARS-CoV-2 , 2022, Science.

[3]  B. Walker,et al.  T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all individuals , 2022, Cell.

[4]  S. Bhatt,et al.  Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study , 2022, The Lancet.

[5]  J. Dillner,et al.  Neutralisation sensitivity of the SARS-CoV-2 omicron (B.1.1.529) variant: a cross-sectional study , 2022, The Lancet Infectious Diseases.

[6]  L. Poon,et al.  SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo , 2022, Nature.

[7]  Frances E. Muldoon,et al.  Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity , 2022, Nature.

[8]  D. Barouch,et al.  Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 Omicron , 2022, Nature.

[9]  A. Sette,et al.  T cell responses to SARS-CoV-2 spike cross-recognize Omicron , 2022, Nature.

[10]  S. Schrag,et al.  Association Between 3 Doses of mRNA COVID-19 Vaccine and Symptomatic Infection Caused by the SARS-CoV-2 Omicron and Delta Variants. , 2022, JAMA.

[11]  E. Shin,et al.  T cell epitopes in SARS-CoV-2 proteins are substantially conserved in the Omicron variant , 2022, Cellular & Molecular Immunology.

[12]  A. Sette,et al.  Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant , 2022, Nature Medicine.

[13]  D. Douek,et al.  mRNA-1273 and BNT162b2 mRNA vaccines have reduced neutralizing activity against the SARS-CoV-2 omicron variant , 2022, Cell Reports Medicine.

[14]  Christina C. Chang,et al.  mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant , 2022, Cell.

[15]  S. Mallal,et al.  SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron , 2022, Cell.

[16]  C. Riou,et al.  Breakthrough infections with SARS-CoV-2 omicron despite mRNA vaccine booster dose , 2022, The Lancet.

[17]  Jordan J. Clark,et al.  Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron , 2021, Nature.

[18]  T. Ndung’u,et al.  Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization , 2021, Nature.

[19]  P. Maes,et al.  Considerable escape of SARS-CoV-2 Omicron to antibody neutralization , 2021, Nature.

[20]  Liyuan Liu,et al.  Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2 , 2021, Nature.

[21]  P. Schommers,et al.  mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant , 2021, Nature Medicine.

[22]  H. Jäck,et al.  The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic , 2021, Cell.

[23]  E. Callaway Heavily mutated Omicron variant puts scientists on alert , 2021, Nature.

[24]  I. Pedraza,et al.  T cell immune responses to SARS-CoV-2 and variants of concern (Alpha and Delta) in infected and vaccinated individuals , 2021, Cellular & Molecular Immunology.

[25]  Jerome H. Kim,et al.  T cell-oriented strategies for controlling the COVID-19 pandemic , 2021, Nature Reviews Immunology.

[26]  J. Sidney,et al.  Broadly directed SARS-CoV-2-specific CD4+ T cell response includes frequently detected peptide specificities within the membrane and nucleoprotein in patients with acute and resolved COVID-19 , 2021, PLoS pathogens.

[27]  R. Scheuermann,et al.  Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals , 2021, Cell Reports Medicine.

[28]  M. Koopmans,et al.  SARS-CoV-2 variants of concern partially escape humoral but not T cell responses in COVID-19 convalescent donors and vaccine recipients , 2021, Science Immunology.

[29]  E. Shin,et al.  SARS-CoV-2 mutations, vaccines, and immunity: implication of variants of concern , 2021, Signal Transduction and Targeted Therapy.

[30]  E. Wherry,et al.  CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer , 2021, Nature Medicine.

[31]  J. Blankson,et al.  SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63. , 2021, The Journal of clinical investigation.

[32]  Jincun Zhao,et al.  Mapping and role of T cell response in SARS-CoV-2–infected mice , 2021, The Journal of experimental medicine.

[33]  D. Lauffenburger,et al.  Correlates of Protection Against SARS-CoV-2 in Rhesus Macaques , 2020, Nature.

[34]  H. Rammensee,et al.  SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition , 2020, Nature immunology.

[35]  J. Greenbaum,et al.  Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals , 2020, Cell.

[36]  M. Okano,et al.  Cohort Study , 2020, Definitions.

[37]  A. Folgori,et al.  Successful vaccination induces multifunctional memory T-cell precursors associated with early control of hepatitis C virus. , 2012, Gastroenterology.

[38]  Pedagógia,et al.  Cross Sectional Study , 2019 .

[39]  M. Roederer,et al.  T-cell quality in memory and protection: implications for vaccine design , 2008, Nature Reviews Immunology.

[40]  Mario Roederer,et al.  Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8+ T cell responses , 2007, The Journal of experimental medicine.

[41]  Mario Roederer,et al.  HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. , 2006, Blood.