Newer optical-based molecular devices from older coordination chemistry

This short review illustrates how the wealth of receptors and ligands available within coordination/supramolecular chemistry can serve as a launch-pad for producing information-handling optical-based molecular devices of various kinds: sensors, assay reagents, logic gates and even small-scale number processors. Such a diverse range of information-handlers allows the addressing of problems in different areas from a common viewpoint. The common viewpoint is strengthened further when we find that the design principles are quite small in number.

[1]  A. Weller,et al.  Electron-transfer and complex formation in the excited state , 1968 .

[2]  H. Morawetz,et al.  Studies of intramolecular excimer formation in dibenzyl ether, dibenzylamine, and its derivatives , 1976 .

[3]  B. Selinger Fluorescence quenching of excited state donor-acceptor pairs in surfactant micelles during a pH titration , 1977 .

[4]  P. Fromherz,et al.  Lipoid pH indicators as probes of electrical potential and polarity in micelles , 1977 .

[5]  Makoto. Nakamura,et al.  Intramolecular fluorescence quenching of phenylalkylamines , 1979 .

[6]  Nicholas J. Turro,et al.  Intramolecular exciplex emission from aqueous .beta.-cyclodextrin solutions , 1984 .

[7]  A. P. Silva,et al.  A new class of fluorescent pH indicators based on photo-induced electron transfer , 1985 .

[8]  A. P. Silva,et al.  Fluorescent signalling crown ethers; ‘switching on’ of fluorescence by alkali metal ion recognition and binding in situ , 1986 .

[9]  A. Castellan,et al.  Cation-directed photochemistry of an anthraceno-crown ether , 1986 .

[10]  The yellow-blue photochromism of mercury(II) dithizonate , 1986 .

[11]  R. Tsien,et al.  Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. , 1989, The Journal of biological chemistry.

[12]  A. Prasanna de Silva,et al.  Photo-induced electron transfer as a general design logic for fluorescent molecular sensors for cations , 1989 .

[13]  R Y Tsien,et al.  Fluorescent indicators for cytosolic sodium. , 1989, The Journal of biological chemistry.

[14]  A. P. Silva,et al.  Fluorescence “Off–On” Signalling upon Linear Recognition and Binding of α,ω‐Alkanediyldiammonium Ions by 9,10‐Bis{(1‐aza‐4,7,10,13,16‐pentaoxacyclooctadecyl)methyl}anthracene , 1990 .

[15]  I. Hemmilä Applications of Fluorescence in Immunoassays , 1991 .

[16]  B. Valeur,et al.  Photophysical properties of styryl derivatives of aminobenzoxazinones , 1992 .

[17]  R. Tsien Intracellular signal transduction in four dimensions: from molecular design to physiology. , 1992, The American journal of physiology.

[18]  A. P. Silva,et al.  Molecular fluorescent signalling with ‘fluor–spacer–receptor’ systems: approaches to sensing and switching devices via supramolecular photophysics , 1992 .

[19]  W. Rettig,et al.  Synthesis and photophysical study of 4-(N-monoaza-15-crown-5) stilbenes forming TICT states and their complexation with cations , 1993 .

[20]  C. McCoy,et al.  A molecular photoionic AND gate based on fluorescent signalling , 1993, Nature.

[21]  Seiji Shinkai,et al.  Light‐switched chromophoric device designed from an ionophoric calix[4]arene , 1993 .

[22]  J. Lehn,et al.  An electro-photoswitch: redox switching of the luminescence of a bipyridine metal complex , 1993 .

[23]  Glenn E. M. Maguire,et al.  Fluorescent PET (photoinduced electron transfer) sensors , 1993 .

[24]  Wolfgang Rettig,et al.  Photoinduced charge separation via twisted intramolecular charge transfer states , 1994 .

[25]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[26]  A. P. Silva,et al.  Fluorescent PET (photoinduced electron transfer) sensors with targeting/anchoring modules as molecular versions of submarine periscopes for mapping membrane-bounded protons , 1994 .

[27]  Vincenzo Balzani,et al.  Supramolecular Photochemistry and Photophysics. A Cylindrical Macrotricyclic Receptor and Its Adducts with Protons, Ammonium Ions, and a Pt(II) Complex , 1994 .

[28]  Anthony W. Czarnik,et al.  Chemical Communication in Water Using Fluorescent Chemosensors , 1994 .

[29]  Fluorescent Chemosensors of Ion and Molecule Recognition: Recent Applications to Pyrophosphate and to Dopamine Sensing , 1994 .

[30]  Jonathan S. Lindsey,et al.  A molecular photonic wire , 1994 .

[31]  S. Shinkai,et al.  A Glucose-Selective Molecular Fluorescence Sensor† , 1994 .

[32]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[33]  L. Fabbrizzi,et al.  Sensors and switches from supramolecular chemistry , 1995 .

[34]  Fluorescent PET(Photoinduced Electron Transfer) Sensors for Calcium Ions. Extension to Multiple Fluorophores and Virtual Spacers , 1995 .

[35]  Frances H. Arnold,et al.  METAL-INDUCED DISPERSION OF LIPID AGGREGATES : A SIMPLE, SELECTIVE, AND SENSITIVE FLUORESCENT METAL ION SENSOR , 1995 .

[36]  A. P. Silva,et al.  Fluorescent signalling of the brain neurotransmitter γ-aminobutyric acid and related amino acid zwitterions , 1996 .

[37]  Bernard Valeur,et al.  Steady-State and Picosecond Spectroscopy of Li+ or Ca2+ Complexes with a Crowned Merocyanine. Reversible Photorelease of Cations , 1996 .

[38]  A. Prasanna de Silva,et al.  Direct visual indication of pH windows: ‘off–on–off’ fluorescent PET (photoinduced electron transfer) sensors/switches , 1996 .

[39]  A. P. Silva,et al.  Fluorescent switches with high selectivity towards sodium ions: Correlation of ion-induced conformation switching with fluorescence function , 1996 .

[40]  Sanjib Ghosh,et al.  NI(II), CU(II), AND ZN(II) CRYPTATE-ENHANCED FLUORESCENCE OF A TRIANTHRYLCRYPTAND : A POTENTIAL MOLECULAR PHOTONIC OR OPERATOR , 1996 .

[41]  J. Fraser Stoddart,et al.  Logic Operations at the Molecular Level. An XOR Gate Based on a Molecular Machine , 1997 .

[42]  A. Samanta,et al.  Modulation of metal–fluorophore communication to developstructurally simple fluorescent sensors for transition metal ions , 1997 .

[43]  Sanjib Ghosh,et al.  Transition metal (II)/(III), Eu(III), and Tb(III) ions induced molecular photonic OR gates using trianthryl cryptands of varying cavity dimension , 1997 .

[44]  A. P. Silva,et al.  Molecular Photoionic AND Logic Gates with Bright Fluorescence and “Off−On” Digital Action , 1997 .

[45]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[46]  A. W. Czarnik,et al.  Chemosensors of ion and molecule recognition , 1997 .

[47]  Martin Gouterman,et al.  Oxygen Quenching of Luminescence of Pressure Sensitive Paint for Wind Tunnel Research , 1997 .

[48]  T. James,et al.  SELECTIVE D-GLUCOSAMINE HYDROCHLORIDE FLUORESCENCE SIGNALLING BASED ON AMMONIUM CATION AND DIOL RECOGNITION , 1997 .

[49]  Y. Hamada,et al.  The development of chelate metal complexes as an organic electroluminescent material , 1997 .

[50]  S. A. D. Silva,et al.  A fluorescent photoinduced electron transfer sensor for cations with an off-on-off proton switch☆ , 1997 .

[51]  Fernando Pina,et al.  Multistate/Multifunctional Molecular‐Level Systems: Light and pH Switching between the Various Forms of a Synthetic Flavylium Salt , 1998 .

[52]  A. P. Silva,et al.  Fluorescent PET(Photoinduced Electron Transfer) reagents for thiols , 1998 .

[53]  A. Samanta,et al.  Transition Metal Ion Induced Fluorescence Enhancement of 4-(N,N-Dimethylethylenediamino)-7-nitrobenz-2-oxa-1,3-diazole , 1998 .

[54]  H. Kaneda,et al.  Anion sensing by a donor–spacer–acceptor system: an intra-molecular exciplex emission enhanced by hydrogen bond-mediated complexation , 1998 .

[55]  Maurizio Licchelli,et al.  Molecular switches of fluorescence operating through metal centred redox couples , 1998 .

[56]  Robert G. Brown,et al.  A fluorescent sensor for Cu2+ at the sub-ppm level , 1998 .

[57]  A. Samanta,et al.  How important is the quenching influence of the transition metal ions in the design of fluorescent PET sensors , 1998 .

[58]  J. S. Sohna,et al.  Zinc(II)-driven Fluorescence Quenching of a Pyrene-labelled Bis-2,2′-bipyridine Ligand , 1999 .

[59]  J. Lakowicz,et al.  Sensing of carbon dioxide by a decrease in photoinduced electron transfer quenching. , 1999, Analytical biochemistry.

[60]  Angelo Taglietti,et al.  A Versatile Fluorescent System for Sensing of H+, Transition Metals, and Aromatic Carboxylates , 1999 .

[61]  Norio Teramae,et al.  Fluorescence ratio sensing of alkali metal ions based on control of the intramolecular exciplex formation , 1999 .

[62]  Jonathan L. Sessler,et al.  Anthracene-linked calix[4]pyrroles: fluorescent chemosensors for anions , 1999 .

[63]  Terence E. Rice,et al.  Integration of Logic Functions and Sequential Operation of Gates at the Molecular-Scale , 1999 .

[64]  L. Prodi,et al.  A [RuII(bipy)3]-[1,9-diamino-3,7-diazanonane-4,6-dione] two-component system, as an efficient ON–OFF luminescent chemosensor for Ni2+ and Cu2+ in water, based on an ET (energy transfer) mechanism , 1999 .

[65]  Terence E. Rice,et al.  A small supramolecular system which emulates the unidirectional, path-selective photoinduced electron transfer (PET) of the bacterial photosynthetic reaction centre (PRC) , 1999 .

[66]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[67]  Development and Proliferation of Radioimmunoassay Technology , 1999 .

[68]  F. Mancin,et al.  Exploiting the Self-Assembly Strategy for the Design of Selective Cu(II) Ion Chemosensors. , 1999, Angewandte Chemie.

[69]  Silver Ion Selective Fluoroionophores Based on Anthracene-Linked Polythiazaalkane or Polythiaalkane Derivatives. , 1999, The Journal of organic chemistry.

[70]  S. Bhattacharya,et al.  Synthesis of a novel thiazole based dipeptide chemosensor for Cu(II) in water , 2000 .

[71]  H. T. Baytekin,et al.  A molecular NAND gate based on Watson-Crick base pairing. , 2000, Organic letters.

[72]  S. Ishihara,et al.  A simple anion chemosensor based on a naphthalene–thiouronium dyad , 2000 .

[73]  J. Sessler,et al.  Second Generation Calixpyrrole Anion Sensors , 2000 .

[74]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[75]  A. P. D. S. and,et al.  Proof-of-Principle of Molecular-Scale Arithmetic , 2000 .

[76]  Masahiro Irie,et al.  Diarylethenes for Memories and Switches. , 2000, Chemical reviews.

[77]  V. Balzani,et al.  Bottom-up Approach to Nanotechnology: Molecular­ Level Devices , 2000 .

[78]  T. Nagano,et al.  Fluorescent Indicators for Nitric Oxide , 2000 .

[79]  Sophie Brasselet,et al.  Fluorescence Behavior of Single‐Molecule pH‐Sensors , 2000 .

[80]  Thorfinnur Gunnlaugsson,et al.  Luminescent molecular logic gates: the two-input inhibit (INH) function , 2000 .

[81]  Fernando Pina,et al.  Artificial Chemical Systems Capable of Mimicking Some Elementary Properties of Neurons , 2000 .

[82]  K. Rurack,et al.  A Selective and Sensitive Fluoroionophore for HgII, AgI, and CuII with Virtually Decoupled Fluorophore and Receptor Units , 2000 .

[83]  Jonathan L. Sessler,et al.  Naked-Eye Detection of Anions in Dichloromethane: Colorimetric Anion Sensors Based on Calix[4]pyrrole , 2000 .

[84]  M. Wasielewski,et al.  Ultrafast molecular logic gate based on optical switching between two long-lived radical ion pair states. , 2001, Journal of the American Chemical Society.

[85]  Logische Schaltungen mit leuchtenden Molekülen , 2001 .

[86]  R. Marchelli,et al.  Dansylated Polyamines as Fluorescent Sensors for Metal Ions: Photophysical Properties and Stability of Copper(II) Complexes in Solution. , 2001 .

[87]  Françoise Remacle,et al.  Intermolecular and intramolecular logic gates , 2001 .

[88]  T. Gunnlaugsson,et al.  Fluorescent photoinduced electron transfer (PET) sensing of anions using charge neutral chemosensors , 2001 .

[89]  K. Rurack,et al.  Flipping the light switch 'on'--the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[90]  P. Ballester,et al.  A squaramide fluorescent ensemble for monitoring sulfate in water , 2001 .

[91]  E. Anslyn,et al.  Teaching old indicators new tricks. , 2001, Accounts of chemical research.

[92]  P. Avouris,et al.  Carbon Nanotube Inter- and Intramolecular Logic Gates , 2001 .

[93]  S. Ralston,et al.  The synthesis and evaluation of o-phenylenediamine derivatives as fluorescent probes for nitric oxide detection , 2001 .

[94]  M. L. Bell,et al.  Modular fluorescence sensors for saccharides. , 2002, Chemical communications.

[95]  J F Stoddart,et al.  Switching devices based on interlocked molecules. , 2001, Accounts of chemical research.

[96]  X. Qian,et al.  4-Amino-1,8-dicyanonaphthalene derivatives as novel fluorophore and fluorescence switches: efficient synthesis and fluorescence enhancement induced by transition metal ions and protons , 2002 .

[97]  N. Marcotte,et al.  Pyrophosphate detection in water by fluorescence competition assays: inducing selectivity through the choice of the indicator. , 2002, Angewandte Chemie.

[98]  Kenny C. Loo,et al.  A fluorescent ‘off-on-off’ proton switch with an overriding ‘enable-disable’ sodium ion switch , 2002 .

[99]  X. Qian,et al.  Synthesis and photophysical properties of 1,8-naphthalimide-labelled PAMAM as PET sensors of protons and of transition metal ions , 2002 .

[100]  Y. Gao,et al.  Theoretical Investigation of the Directional Electron Transfer in 4-Aminonaphthalimide Compounds † , 2002 .

[101]  Chao-Tsen Chen,et al.  A highly selective fluorescent chemosensor for lead ions. , 2002, Journal of the American Chemical Society.

[102]  F. Raymo Digital processing and communication with molecular switches , 2002 .

[103]  S. Sasaki,et al.  Fluororeceptor for zwitterionic form amino acids in aqueous methanol solution , 2002 .

[104]  S. Shinkai,et al.  Artificial Receptors as Chemosensors for Carbohydrates , 2002 .

[105]  Engin U Akkaya,et al.  Modulation of boradiazaindacene emission by cation-mediated oxidative PET. , 2002, Organic letters.

[106]  D. Lawrence,et al.  Design and synthesis of a fluorescent reporter of protein kinase activity. , 2002, Journal of the American Chemical Society.

[107]  Reza Dabestani,et al.  Supramolecular fluorescent probes for the detection of mixed alkali metal ions that mimic the function of integrated logic gates , 2002 .

[108]  T. Santa,et al.  A photoinduced electron-transfer reagent for peroxyacetic acid, 4-ethylthioacetylamino-7-phenylsulfonyl-2,1,3-benzoxadiazole, based on the method for predicting the fluorescence quantum yields. , 2002, Analytical chemistry.

[109]  D. Rudkevich,et al.  Reversible covalent chemistry of CO2. , 2002, Chemical communications.

[110]  Alessandra Carbone,et al.  Circuits and programmable self-assembling DNA structures , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Darko Stefanovic,et al.  Deoxyribozyme-based logic gates. , 2002, Journal of the American Chemical Society.

[112]  E. Akkaya,et al.  Selective chromogenic response via regioselective binding of cations: a novel approach in chemosensor design , 2002 .

[113]  Ute Resch-Genger,et al.  Rigidization, preorientation and electronic decoupling--the 'magic triangle' for the design of highly efficient fluorescent sensors and switches. , 2002, Chemical Society reviews.

[114]  A. P. de Silva,et al.  Simultaneously multiply-configurable or superposed molecular logic systems composed of ICT (internal charge transfer) chromophores and fluorophores integrated with one- or two-ion receptors. , 2002, Chemistry.

[115]  R. Levine,et al.  Molecular logic by optical spectroscopy with output transfer by charge migration along a peptide , 2002 .

[116]  Françisco M Raymo,et al.  Multichannel digital transmission in an optical network of communicating molecules. , 2002, Journal of the American Chemical Society.

[117]  N. Marcotte,et al.  Intra-molecular Electronic Energy Transfer in Mono- and Di-nuclear Zinc(II) Supramolecular Complexes , 2002 .

[118]  A. Samanta,et al.  Photophysical and Transition-Metal Ion Signaling Behavior of a Three-Component System Comprising a Cryptand Moiety as the Receptor , 2002 .

[119]  Amitava Das,et al.  Cerium ion-induced fluorescence enhancement of a tripodal fluoroionophore , 2002 .

[120]  T. Gunnlaugsson,et al.  Delayed lanthanide luminescence sensing of aromatic carboxylates using heptadentate triamide Tb(III) cyclen complexes: the recognition of salicylic acid in water. , 2002, Chemical communications.

[121]  D W Bennett,et al.  Molecular Wires, Switches, and Memories , 2002, Annals of the New York Academy of Sciences.

[122]  X. Qian,et al.  Novel heterogeneous PET fluorescent sensors selective for transition metal ions or protons: polymers regularly labelled with naphthalimide , 2002 .

[123]  Françoise Remacle,et al.  On spectroscopy, control, and molecular information processing. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[124]  Sukhdeep Kaur,et al.  Photoactive chemosensors 3: a unique case of fluorescence enhancement with Cu(II). , 2002, Chemical communications.

[125]  T. Gunnlaugsson,et al.  Fluorescent sensing of pyrophosphate and bis-carboxylates with charge neutral PET chemosensors. , 2002, Organic letters.

[126]  Tohru Yamamoto,et al.  Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[127]  Synthesis of 4-(Diarylpyrazolinyl)phenylmaleimides as Thiol-Directed Fluoroprobes. , 2002 .

[128]  J. H. Tucker,et al.  A ditopic ferrocene receptor for anions and cations that functions as a chromogenic molecular switch. , 2003, Chemical communications.