Nanotube Electron Drag in Flowing Liquids.

We show that electric current can be generated in metallic carbon nanotubes immersed in liquids flowing along them. Molecular layers of the liquid coat the nanotube, slip along its surface, and excite there a phonon wind, which drags free carriers in the tube. The induced electric current should allow building of nanoscale detectors or power cells.

[1]  A. Rinzler,et al.  Thermoelectric Power of Single-Walled Carbon Nanotubes , 1998 .

[2]  Král Linearized quantum transport equations: ac conductance of a quantum wire with an electron-phonon interaction. , 1996, Physical review. B, Condensed matter.

[3]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[4]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[5]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[6]  B. Hu,et al.  Frictional drag between quantum wells mediated by phonon exchange , 1997, cond-mat/9707111.

[7]  Petr Král,et al.  Laser-Driven Atomic Pump , 1999 .

[8]  Price,et al.  New phenomena in coupled transport between 2D and 3D electron-gas layers. , 1989, Physical review letters.

[9]  T. Ebbesen,et al.  Capillarity and Wetting of Carbon Nanotubes , 1994, Science.

[10]  J P Landers,et al.  Molecular diagnostics on microfabricated electrophoretic devices: from slab gel- to capillary- to microchip-based assays for T- and B-cell lymphoproliferative disorders. , 1999, Clinical chemistry.

[11]  T. Holstein,et al.  Theory of transport phenomena in an electron-phonon gas , 1964 .

[12]  A. Rubio,et al.  AB INITIO STRUCTURAL, ELASTIC, AND VIBRATIONAL PROPERTIES OF CARBON NANOTUBES , 1999 .

[13]  B. Spivak,et al.  MESOSCOPIC MECHANISM OF ADIABATIC CHARGE TRANSPORT , 1998, cond-mat/9809189.

[14]  P. Král,et al.  Hot-phonon-assisted resonant tunneling in a quantum well , 1998 .

[15]  R. Schasfoort,et al.  Field-effect flow control for microfabricated fluidic networks , 1999, Science.

[16]  H. Wagner,et al.  Evaluation of Young’s Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy , 1998 .

[17]  Marcus,et al.  An adiabatic quantum electron pump , 1999, Science.

[18]  Krylov,et al.  Molecular transport in the nanometer regime. , 1994, Physical Review Letters.

[19]  Kwon,et al.  Fractional quantum conductance in carbon nanotubes , 2000, Physical review letters.

[20]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[21]  Smith,et al.  Coulomb drag between parallel two-dimensional electron systems. , 1992, Physical review. B, Condensed matter.

[22]  Robbins,et al.  Shear flow near solids: Epitaxial order and flow boundary conditions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[23]  M. Balkanski,et al.  ELASTIC PROPERTIES OF SINGLE-WALLED CARBON NANOTUBES , 2000 .

[24]  P. J. Price Hot electron effects in heterolayers , 1983 .

[25]  S. Troian,et al.  A general boundary condition for liquid flow at solid surfaces , 1997, Nature.

[26]  Photogalvanic effects in heteropolar nanotubes , 2000, Physical review letters.

[27]  D. Levy,et al.  Energy Transfer in Bichromophoric Molecules: The Effect of Symmetry and Donor/Acceptor Energy Gap , 1999 .

[28]  H. Wagner,et al.  Buckling and Collapse of Embedded Carbon Nanotubes , 1998 .

[29]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[30]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[31]  F. V. Carrier Scattering in Metals and Semiconductors , 2022 .

[32]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[33]  West,et al.  Mutual friction between parallel two-dimensional electron systems. , 1991, Physical review letters.

[34]  M. Kakihana,et al.  Effect of A - and B -cation substitutions on the phase stability of PbTiO 3 ceramics , 1999 .

[35]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[36]  David A. Ritchie,et al.  SINGLE-ELECTRON TRANSPORT IN A ONE-DIMENSIONAL CHANNEL BY HIGH-FREQUENCY SURFACE ACOUSTIC WAVES , 1997 .

[37]  D. Thouless,et al.  Quantization of particle transport , 1983 .

[38]  Derek Thompson,et al.  Ceramics: Tough cookery , 1997, Nature.