Interface Analysis of Cu(In,Ga)Se2 and ZnS Formed Using Sulfur Thermal Cracker

[1]  Jeha Kim,et al.  Electronic effect of Na on Cu(In,Ga)Se2 solar cells , 2012 .

[2]  Jeha Kim,et al.  Na effect on flexible Cu(In,Ga)Se2 photovoltaic cell depending on diffusion barriers (SiOx, i-ZnO) on stainless steel , 2014 .

[3]  Milton Ohring,et al.  Materials science of thin films : deposition and structure , 2002 .

[4]  Dae‐Hyung Cho,et al.  Flower like Buffer Layer to Improve Efficiency of Submicron‐Thick Culn1−xGaxSe2 Solar Cells , 2015 .

[5]  DongSeop Kim,et al.  Non-toxically enhanced sulfur reaction for formation of chalcogenide thin films using a thermal cracker , 2014 .

[6]  M. Pinarbasi,et al.  Recent advances in electroplating based CIGS solar cell fabrication , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[7]  Jeha Kim,et al.  Effect of annealing on CdS/Cu(In,Ga)Se2 thin-film solar cells , 2011 .

[8]  Paul R. Berger,et al.  Broadband Finite‐Difference Time‐Domain Modeling of Plasmonic Organic Photovoltaics , 2014 .

[9]  B. Cardozo,et al.  Device characteristics of a 17.1% efficient solar cell deposited by a non-vacuum printing method on flexible foil , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[10]  W. Han,et al.  Incorporation of Cu in Cu(In,Ga)Se2-based Thin-film Solar Cells , 2009 .

[11]  Flexible solar cells with a Cu(In,Ga)Se2 absorber grown by using a Se thermal cracker on a polyimide substrate , 2015 .

[12]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[13]  Jeha Kim,et al.  Distinction of (220) and (204) textures of Cu(In,Ga)Se2 film and their growth behaviors depending on substrate nature and Na incorporation , 2015 .

[14]  Shiro Nishiwaki,et al.  Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. , 2011, Nature materials.

[15]  K. Kushiya,et al.  Performance improvement of CIGS-based modules by depositing high-quality Ga-doped ZnO windows with magnetron sputtering , 2001 .

[16]  Andreas Bauer,et al.  Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7% , 2015 .

[17]  Jeha Kim,et al.  Junction formation at the interface of CdS/CuInxGa(1 − x)Se2 , 2014 .

[18]  Jeha Kim,et al.  ZnS buffer layer prepared by sulfurization of sputtered Zn film for Cu(In, Ga)Se2 solar cells , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[19]  K. Leung,et al.  One-Dimensional and Two-Dimensional ZnO Nanostructured Materials on a Plastic Substrate and Their Field Emission Properties , 2008 .

[20]  D. Hariskos,et al.  Buffer layers in Cu(In,Ga)Se2 solar cells and modules , 2005 .

[21]  Debora Keller,et al.  Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. , 2013, Nature materials.

[22]  B. Ahn,et al.  Improvement of the cell performance in the ZnS/Cu(In,Ga)Se2 solar cells by the sputter deposition of a bilayer ZnO : Al film , 2013 .

[24]  Martin A. Green,et al.  Solar cell efficiency tables (version 46) , 2015 .

[25]  Sun Cheul Kim,et al.  Effects of Zn Diffusion from (Zn,Mg)O Buffer to CIGS Film on the Performance of Cd-Free Cu(In,Ga)Se2 Solar Cells , 2014 .

[26]  Tae Gun Kim,et al.  Photovoltaic Performance and Interface Behaviors of Cu(In,Ga)Se2 Solar Cells with a Sputtered-Zn(O,S) Buffer Layer by High-Temperature Annealing. , 2015, ACS applied materials & interfaces.

[27]  J. Yun,et al.  Characteristics of temperature and wavelength dependence of CuInSe2 thin‐film solar cell with sputtered Zn(O,S) and CdS buffer layers , 2014 .

[28]  Claudia Felser,et al.  Exchange bias up to room temperature in antiferromagnetic hexagonal Mn3Ge , 2013, 1311.3067.

[29]  Jeha Kim,et al.  Influence of growth temperature of transparent conducting oxide layer on Cu(In,Ga) Se2 thin-film solar cells , 2012 .