Metamaterials: The early years in the USA

Metamaterials are artificial materials formed by embedding highly subwavelength inclusions in a host medium, which yield homogenized permittivity and permeability values. By design they offer the promise of exotic physics responses not generally available with naturally occurring materials, as well as the ability to tailor their properties to specific applications. The initial years of discovery emphasized confirming many of their exotic properties and exploring their actual potential for science and engineering applications. These seed efforts have born the sweet fruit enjoyed by the current generation of metamaterials scientists and engineers. This review will emphasize the initial investigative forays in the USA that supported and encouraged the development of the metamaterials era and the subsequent recognition that they do have significant advantages for practical applications.

[1]  Richard W. Ziolkowski,et al.  Broad Bandwidth, Electrically Small, Non-Foster Element-Augmented Antenna Designs, Analyses, and Measurements , 2013, IEICE Trans. Commun..

[2]  Hassan Mirzaei,et al.  Realizing Non-Foster Reactive Elements Using Negative-Group-Delay Networks , 2013, IEEE Transactions on Microwave Theory and Techniques.

[3]  Hassan Mirzaei,et al.  A Resonant Printed Monopole Antenna With an Embedded Non-Foster Matching Network , 2013, IEEE Transactions on Antennas and Propagation.

[4]  K. Sarabandi,et al.  Metamaterial Inspired Optically Transparent Band-Selective Ground Planes for Antenna Applications , 2013, IEEE Transactions on Antennas and Propagation.

[5]  K. Rajab,et al.  Noise analysis of broadband active metamaterials with non-Foster loads , 2013 .

[6]  Richard W. Ziolkowski,et al.  An efficient, broad bandwidth, high directivity, electrically small antenna , 2013 .

[7]  Ning Zhu,et al.  Augmenting a Modified Egyptian Axe Dipole Antenna With Non-Foster Elements to Enlarge Its Directivity Bandwidth , 2013, IEEE Antennas and Wireless Propagation Letters.

[8]  A. Monti,et al.  Design of a Non-Foster Actively Loaded SRR and Application in Metamaterial-Inspired Components , 2013, IEEE Transactions on Antennas and Propagation.

[9]  E. Afshari,et al.  Composite Metamaterial and Metasurface Integrated With Non-Foster Active Circuit Elements: A Bandwidth-Enhancement Investigation , 2013, IEEE Transactions on Antennas and Propagation.

[10]  R. Ziolkowski,et al.  Jamming of Quantum Emitters by Active Coated Nanoparticles , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  Igor Krois,et al.  Ultra-broadband simultaneous superluminal phase and group velocities in non-Foster epsilon-near-zero metamaterial , 2013 .

[12]  R. Ziolkowski,et al.  Optical Antennas: Where high-frequency engineering advances optics. Active nanoparticles as nanoantennas , 2013 .

[13]  Cheng Zhu,et al.  Characteristics of Electrically Small Spiral Resonator Metamaterial With Electric and Magnetic Responses , 2012, IEEE Antennas and Wireless Propagation Letters.

[14]  Ning Zhu,et al.  Broad-Bandwidth, Electrically Small Antenna Augmented With an Internal Non-Foster Element , 2012, IEEE Antennas and Wireless Propagation Letters.

[15]  Richard W. Ziolkowski,et al.  Design and measurements of an electrically small, broad bandwidth, non- Foster circuit-augmented protractor antenna , 2012 .

[16]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[17]  R F Oulton,et al.  Active nanoplasmonic metamaterials. , 2012, Nature materials.

[18]  N. Engheta,et al.  From RF Circuits to Optical Nanocircuits , 2012, IEEE Microwave Magazine.

[19]  Steven A. Cummer,et al.  Nonreciprocal active metamaterials , 2012 .

[20]  D. Segovia-Vargas,et al.  Stability of Non-Foster Reactive Elements for Use in Active Metamaterials and Antennas , 2012, IEEE Transactions on Antennas and Propagation.

[21]  Zhixiang Huang,et al.  Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium. , 2012, Physical review letters.

[22]  Tatsuo Itoh,et al.  Metamaterial-Based Antennas , 2012, Proceedings of the IEEE.

[23]  C. Holloway,et al.  Characterizing Metasurfaces/Metafilms: The Connection Between Surface Susceptibilities and Effective Material Properties , 2011, IEEE Antennas and Wireless Propagation Letters.

[24]  Igor Krois,et al.  Negative capacitor paves the way to ultra-broadband metamaterials , 2011 .

[25]  Peng Jin,et al.  Metamaterial-Inspired Engineering of Antennas , 2011, Proceedings of the IEEE.

[26]  George V. Eleftheriades,et al.  Metamaterials: Fundamentals and Applications in the Microwave and Optical Regimes [Scanning the Issue] , 2011 .

[27]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[28]  John L. Volakis,et al.  Narrowband and Wideband Metamaterial Antennas Based on Degenerate Band Edge and Magnetic Photonic Crystals , 2011, Proceedings of the IEEE.

[29]  D. Sievenpiper,et al.  Superluminal Waveguides Based on Non-Foster Circuits for Broadband Leaky-Wave Antennas , 2011, IEEE Antennas and Wireless Propagation Letters.

[30]  Andrea Alù,et al.  Erratum: Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors (Physical Review Letters (2005) 95 (095504)) , 2011 .

[31]  Zhaowei Liu,et al.  Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. , 2010, Nature communications.

[32]  H. Gibbs,et al.  Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain. , 2010, Optics express.

[33]  U. Chettiar,et al.  Loss-free and active optical negative-index metamaterials , 2010, Nature.

[34]  Igor Krois,et al.  Towards active dispersionless ENZ metamaterial for cloaking applications , 2010 .

[35]  R. Ziolkowski,et al.  Active coated nano-particle excited by an arbitrarily located electric Hertzian dipole—resonance and transparency effects , 2010 .

[36]  V. Shalaev,et al.  Negative-Index Metamaterials , 2010 .

[37]  N. Engheta,et al.  Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. , 2009, Physical review letters.

[38]  C. Holloway,et al.  A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials , 2009 .

[39]  Yu-qun Yuan,et al.  Zero loss magnetic metamaterials using powered active unit cells. , 2009, Optics express.

[40]  J. Volakis,et al.  Miniature Antenna Using Printed Coupled Lines Emulating Degenerate Band Edge Crystals , 2009, IEEE Transactions on Antennas and Propagation.

[41]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[42]  C. Caloz,et al.  CRLH metamaterial leaky-wave and resonant antennas , 2008, IEEE Antennas and Propagation Magazine.

[43]  Fan Yang,et al.  Electromagnetic Band Gap Structures in Antenna Engineering , 2008 .

[44]  Yahya Rahmat-Samii,et al.  Electromagnetic Band Gap Structures in Antenna Engineering: Frontmatter , 2008 .

[45]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[46]  Andrea Alù,et al.  REVIEW ARTICLE: Plasmonic and metamaterial cloaking: physical mechanisms and potentials , 2008 .

[47]  Richard W. Ziolkowski,et al.  Lumped element-based, highly sub-wavelength, negative index metamaterials at UHF frequencies , 2008 .

[48]  Zhaowei Liu,et al.  Superlenses to overcome the diffraction limit. , 2008, Nature materials.

[49]  Andrea Alù,et al.  Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .

[50]  Richard W Ziolkowski,et al.  CNP optical metamaterials. , 2008, Optics express.

[51]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[52]  Andrea Alù,et al.  Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. , 2008, Physical review letters.

[53]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[54]  Richard W. Ziolkowski,et al.  Low frequency lumped element-based negative index metamaterial , 2007 .

[55]  Yuri S. Kivshar,et al.  Self-tuning mechanisms of nonlinear split-ring resonators , 2007 .

[56]  Steven A. Cummer,et al.  An architecture for active metamaterial particles and experimental validation at RF , 2007 .

[57]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[58]  Vincent Fusco,et al.  Electromagnetic Metamaterials: Physics and Engineering Explorations (Engheta, N. and Ziolkowski, R.W.; 2006) [Book Review] , 2007, IEEE Antennas and Propagation Magazine.

[59]  N. Engheta,et al.  Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials , 2007, 0705.2612.

[60]  N. Engheta,et al.  Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights. , 2007, Optics express.

[61]  Sailing He Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. By Christophe Caloz and Tatsuo Itoh. , 2007 .

[62]  T. Itoh,et al.  Infinite Wavelength Resonant Antennas With Monopolar Radiation Pattern Based on Periodic Structures , 2007, IEEE Transactions on Antennas and Propagation.

[63]  K. Sarabandi,et al.  Design and Modeling of Patch Antenna Printed on Magneto-Dielectric Embedded-Circuit Metasubstrate , 2007, IEEE Transactions on Antennas and Propagation.

[64]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[65]  Wenshan Cai,et al.  Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm. , 2006, Optics letters.

[66]  J. Gordon,et al.  The design and simulated performance of a coated nano-particle laser. , 2006, Optics express.

[67]  N. Engheta,et al.  Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern , 2006, cond-mat/0609220.

[68]  M. Wegener,et al.  Negative-index metamaterial at 780 nm wavelength. , 2006, Optics letters.

[69]  Michael Scalora,et al.  Negative refraction and subwavelength imaging using transparent metal-dielectric stacks , 2006 .

[70]  V. Shalaev Optical negative-index metamaterials , 2007 .

[71]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[72]  S. Burger,et al.  Photonic Metamaterials: Magnetism at Optical Frequencies , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[73]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[74]  Y. Kivshar,et al.  Tunable split-ring resonators for nonlinear negative-index metamaterials. , 2006, Optics express.

[75]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[76]  A. Kildishev,et al.  Negative-Index Metamaterials: Going Optical , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[77]  K. Sertel,et al.  Miniature Antennas and Arrays Embedded Within Magnetic Photonic Crystals , 2006, IEEE Antennas and Wireless Propagation Letters.

[78]  R. Ziolkowski Ultrathin, metamaterial-based laser cavities , 2006 .

[79]  V. Shalaev,et al.  Focus Issue on Metamaterials , 2006 .

[80]  Kevin J. Malloy,et al.  Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies , 2006 .

[81]  K. Sarabandi,et al.  A substrate for small patch antennas providing tunable miniaturization factors , 2006, IEEE Transactions on Microwave Theory and Techniques.

[82]  Lei Zhang,et al.  Negative Index Materials Using Simple Short Wire Pairs , 2006 .

[83]  N. Engheta,et al.  Metamaterials: Physics and Engineering Explorations , 2006 .

[84]  Tatsuo Itoh,et al.  Electromagnetic metamaterials : transmission line theory and microwave applications : the engineering approach , 2005 .

[85]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[86]  T. Itoh,et al.  Super-compact multilayered left-handed transmission line and diplexer application , 2005, IEEE Transactions on Microwave Theory and Techniques.

[87]  A. Erentok,et al.  Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications , 2005, IEEE Transactions on Antennas and Propagation.

[88]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[89]  Tomasz M. Grzegorczyk,et al.  EXPERIMENTAL STUDY ON SEVERAL LEFT-HANDED MATAMATERIALS , 2005 .

[90]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[91]  Richard W Ziolkowski,et al.  Propagation in and scattering from a matched metamaterial having a zero index of refraction. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  T. Itoh,et al.  Composite right/left-handed transmission line metamaterials , 2004, IEEE Microwave Magazine.

[93]  K. Sarabandi,et al.  Magneto-dielectrics in electromagnetics: concept and applications , 2004, IEEE Transactions on Antennas and Propagation.

[94]  David R. Smith,et al.  Reversing Light: Negative Refraction , 2004 .

[95]  T. Itoh,et al.  Characteristics of the composite right/left-handed transmission lines , 2004, IEEE Microwave and Wireless Components Letters.

[96]  Stefan Enoch,et al.  Perfect lenses made with left-handed materials: Alice's mirror? , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[97]  George V. Eleftheriades,et al.  Negative refraction, growing evanescent waves, and sub-diffraction imaging in loaded transmission-line metamaterials , 2003 .

[98]  C. Holloway,et al.  A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix , 2003 .

[99]  William E. McKinzie,et al.  Design methodology for Sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas , 2003 .

[100]  C. Holloway,et al.  Averaged transition conditions for electromagnetic fields at a metafilm , 2003 .

[101]  Richard W. Ziolkowski,et al.  Metamaterial special issue introduction , 2003 .

[102]  Y. Rahmat-Samii,et al.  Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications , 2003 .

[103]  Y. Rahmat-Samii,et al.  Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications , 2003 .

[104]  Hyok J. Song,et al.  Two-dimensional beam steering using an electrically tunable impedance surface , 2003 .

[105]  Andrea Alù,et al.  Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency , 2003 .

[106]  Dimitris Psychoudakis,et al.  Topology design optimization of dielectric substrates for bandwidth improvement of a patch antenna , 2003 .

[107]  Richard W. Ziolkowski,et al.  Application of double negative materials to increase the power radiated by electrically small antennas , 2003 .

[108]  R. Ziolkowski Design, fabrication, and testing of double negative metamaterials , 2003 .

[109]  Xiang Zhang,et al.  Regenerating evanescent waves from a silver superlens. , 2003, Optics express.

[110]  John B. Pendry,et al.  Focus Issue: Negative Refraction and Metamaterials , 2003 .

[111]  R. Greegor,et al.  Experimental determination and numerical simulation of the properties of negative index of refraction materials. , 2003, Optics express.

[112]  David R. Smith,et al.  Numerical study of electromagnetic waves interacting with negative index materials. , 2003, Optics express.

[113]  J. Kong,et al.  Cerenkov radiation in materials with negative permittivity and permeability. , 2003, Optics express.

[114]  A. Lakhtakia Handedness reversal of circular Bragg phenomenon due to negative real permittivity and permeability. , 2003, Optics express.

[115]  Richard Ziolkowski,et al.  Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs. , 2003, Optics express.

[116]  J. Pendry,et al.  Perfect cylindrical lenses. , 2003, Optics express.

[117]  Peter Markos,et al.  Transmission properties and effective electromagnetic parameters of double negative metamaterials. , 2003, Optics express.

[118]  Steven G. Johnson,et al.  Negative Refraction without Negative Index in Metallic Photonic Crystals References and Links , 2022 .

[119]  Viktor Podolskiy,et al.  Plasmon modes and negative refraction in metal nanowire composites. , 2003, Optics express.

[120]  Y. Kivshar,et al.  Nonlinear properties of left-handed metamaterials. , 2003, Physical review letters.

[121]  R. Greegor,et al.  Experimental verification and simulation of negative index of refraction using Snell's law. , 2003, Physical review letters.

[122]  J. Pendry,et al.  Comment on "Wave refraction in negative-index media: always positive and very inhomogeneous". , 2002, Physical review letters.

[123]  G.V. Eleftheriades,et al.  Compact linear lead/lag metamaterial phase shifters for broadband applications , 2003, IEEE Antennas and Wireless Propagation Letters.

[124]  Tatsuo Itoh,et al.  Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability , 2002 .

[125]  A. Grbic,et al.  Experimental verification of backward-wave radiation from a negative refractive index metamaterial , 2002 .

[126]  N Garcia,et al.  Is there an experimental verification of a negative index of refraction yet? , 2002, Optics letters.

[127]  M. Nieto-Vesperinas,et al.  Left-handed materials do not make a perfect lens. , 2002, Physical review letters.

[128]  R M Walser,et al.  Wave refraction in negative-index media: always positive and very inhomogeneous. , 2002, Physical review letters.

[129]  N. Engheta,et al.  An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability , 2002, IEEE Antennas and Wireless Propagation Letters.

[130]  Fan Yang,et al.  A low‐profile circularly polarized curl antenna over an electromagnetic bandgap (EBG) surface , 2001 .

[131]  Sergei A. Tretyakov,et al.  Meta‐materials with wideband negative permittivity and permeability , 2001 .

[132]  R. Ziolkowski,et al.  Wave propagation in media having negative permittivity and permeability. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[133]  J. Williams Some problems with negative refraction. , 2001, Physical review letters.

[134]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[135]  David R. Smith,et al.  Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial , 2001 .

[136]  Rodger M. Walser,et al.  Electromagnetic metamaterials , 2001, SPIE Optics + Photonics.

[137]  G. ’t Hooft Comment on "negative refraction makes a perfect lens". , 2001, Physical review letters.

[138]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[139]  David R. Smith,et al.  Negative refractive index in left-handed materials. , 2000, Physical review letters.

[140]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[141]  R. Ziolkowski,et al.  Two time-derivative Lorentz material (2TDLM) formulation of a Maxwellian absorbing layer matched to a lossy medium , 2000 .

[142]  Richard W. Ziolkowski,et al.  Artificial composite materials consisting of nonlinearly loaded electrically small antennas: operational-amplifier-based circuits with applications to smart skins , 1999 .

[143]  Tatsuo Itoh,et al.  Aperture-coupled patch antenna on UC-PBG substrate , 1999 .

[144]  Mario Sorolla,et al.  Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates , 1999 .

[145]  Tatsuo Itoh,et al.  A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure , 1999 .

[146]  D. Sievenpiper,et al.  High-impedance electromagnetic surfaces with a forbidden frequency band , 1999 .

[147]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[148]  R. Ziolkowski,et al.  EXPLICIT MATRIX FORMULATION FOR THE ANALYSIS OF SYNTHETIC LINEARLY AND NON LINEARLY LOADED MATERIALS IN FDTD , 1999 .

[149]  R. Ziolkowski,et al.  Microwave signal rectification using artificial composite materials composed of diode-loaded electrically small dipole antennas , 1998 .

[150]  R. Ziolkowski,et al.  Theoretical study of synthetic bianisotropic materials , 1998 .

[151]  Richard W. Ziolkowski,et al.  Time-derivative Lorentz material model-based absorbing boundary condition , 1997 .

[152]  Richard W. Ziolkowski,et al.  Artificial molecule realization of a magnetic wall , 1997 .

[153]  R. Ziolkowski,et al.  Passive artificial molecule realizations of dielectric materials , 1997 .

[154]  Richard W. Ziolkowski,et al.  Time-derivative Lorentz materials and their utilization as electromagnetic absorbers , 1997 .

[155]  R. W. Zislkowski The design of Maxwellian absorbers for numerical boundary conditions and for practical applications using engineered artificial materials , 1997 .

[156]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[157]  A. Sihvola,et al.  Karl F. Lindman: the last Hertzian, and a harbinger of electromagnetic chirality , 1992, IEEE Antennas and Propagation Magazine.

[158]  Nader Engheta,et al.  A reciprocal phase shifter using novel pseudochiral or ω medium , 1992 .

[159]  N. Engheta,et al.  Chirosorb as an invisible medium , 1989 .

[160]  W. Rotman Plasma simulation by artificial dielectrics and parallel-plate media , 1962 .

[161]  S. Jones,et al.  Metallic Delay Lenses , 1949, Nature.

[162]  Jagadis Chunder Bose,et al.  On the rotation of plane of polarisation of electric wave by a twisted structure , 1898, Proceedings of the Royal Society of London.