Verification methods for dense and sparse systems of equations

In this paper we describe verification methods for dense and large sparse systems of linear and nonlinear equations. Most of the methods described have been developed by the author. Other methods are mentioned, but it is not intended to give an overview over existing methods. Many of the results are published in similar form in research papers or books. In this monograph we want to give a concise and compact treatment of some fundamental concepts of the subject. Moreover, many new results are included not being published elsewhere. Among them are the following. A new test for regularity of an interval matrix is given. It is shown that it is significantly better for classes of matrices. Inclusion theorems are formulated for continuous functions not necessarily being differentiable. Some extension of a nonlinear function w.r.t. a point x̃ is used which may be a slope, Jacobian or other. More narrow inclusions and a wider range of applicability (significantly wider input tolerances) are achieved by (i) using slopes rather than Jacobians, (ii) improvement of slopes for transcendental functions, (iii) a two-step approach proving existence in a small and uniqueness in a large interval thus allowing for proving uniqueness in much wider domains and significantly improving the speed, (iv) use of an Einzelschrittverfahren, (v) computing an inclusion of the difference w.r.t. an approximate solution. Methods for problems with parameter dependent input intervals are given yielding inner and outer inclusions. An improvement of the quality of inner inclusions is described. Methods for parametrized sparse nonlinear systems are given for expansion matrix being (i) M-matrix, (ii) symmetric positive definite, (iii) symmetric, (iv) general. A fast interval library having been developed at the author’s institute is presented being significantly faster compared to existing libraries.

[1]  L. Collatz Einschließungssatz für die charakteristischen Zahlen von Matrizen , 1942 .

[2]  F. L. Bauer Optimally scaled matrices , 1963 .

[3]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[4]  E. Hansen On solving systems of equations using interval arithmetic , 1968 .

[5]  E. Hansen On the solution of linear algebraic equations with interval coefficients , 1969 .

[6]  C. G. Broyden A New Method of Solving Nonlinear Simultaneous Equations , 1969, Comput. J..

[7]  Robert Todd Gregory,et al.  A collection of matrices for testing computational algorithms , 1969 .

[8]  Richard W. Hamming,et al.  Introduction to Applied Numerical Analysis. , 1971 .

[9]  P. Henrici,et al.  Circular arithmetic and the determination of polynomial zeros , 1971 .

[10]  J. H. Wilkinson Modern Error Analysis , 1971 .

[11]  G. Alefeld,et al.  Einführung in die Intervallrechnung , 1974 .

[12]  R. Brent,et al.  Fast local convergence with single and multistep methods for nonlinear equations , 1975, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[13]  Rudolf Krawczyk Fehlerabschätzung bei linearer Optimierung , 1975, Interval Mathematics.

[14]  E. R. Hansen,et al.  A Generalized Interval Arithmetic , 1975, Interval Mathematics.

[15]  B. S. Garbow,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[16]  G. Alefeld Über die Durchführbarkeit des Gaußschen Algorithmus bei Gleichungen mit Intervallen als Koeffizienten , 1977 .

[17]  R. Skeel Iterative refinement implies numerical stability for Gaussian elimination , 1980 .

[18]  Siegfried M. Rump,et al.  Kleine Fehlerschranken bei Matrixproblemen , 1980 .

[19]  Willard L. Miranker,et al.  Computer arithmetic in theory and practice , 1981, Computer science and applied mathematics.

[20]  Louis B. Rall,et al.  Automatic Differentiation: Techniques and Applications , 1981, Lecture Notes in Computer Science.

[21]  Siegfried M. Rump,et al.  Solving Algebraic Problems with High Accuracy , 1983, IMACS World Congress.

[22]  Harald Böhm Berechnung von Polynomnullstellen und Auswertung arithmetischer Ausdrücke mit garantierter maximaler Genauigkeit , 1983 .

[23]  Jon G. Rokne,et al.  Computer Methods for the Range of Functions , 1984 .

[24]  Hartmut Schwandt An Interval Arithmetic Approach for the Construction of an Almost Globally Convergent Method for the Solution of the Nonlinear Poisson Equation on the Unit Square , 1984 .

[25]  Christian Jansson,et al.  Zur linearen Optimierung mit unscharfen Daten , 1985 .

[26]  Siegfried M. Rump,et al.  ACRITH - High Accuracy Arithmetic Subroutine Library , 1985, European Conference on Computer Algebra.

[27]  Siegfried M. Rump,et al.  New Results on Verified Inclusions , 1985, Accurate Scientific Computations.

[28]  A. Neumaier,et al.  Interval Slopes for Rational Functions and Associated Centered Forms , 1985 .

[29]  Arnold Neumaier,et al.  Existence of solutions of piecewise differentiable systems of equations , 1986 .

[30]  Siegfried M. Rump,et al.  Algebraic Computation, Numerical Computation and Verified Inclusions , 1988, Trends in Computer Algebra.

[31]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[32]  A. Neumaier Rigorous sensitivity analysis for parameter-dependent systems of equations , 1989 .

[33]  S. I. Feldman,et al.  A Fortran to C converter , 1990, FORF.

[34]  S. Rump Rigorous sensitivity analysis for systems of linear and nonlinear equations , 1990 .

[35]  A. Neumaier Interval methods for systems of equations , 1990 .

[36]  S. Rump Estimation of the Sensitivity of Linear and Nonlinear Algebraic Problems , 1991 .

[37]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[38]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[39]  Mitsuhiro Nakao,et al.  A numerical verification method for the existence of weak solutions for nonlinear boundary value problems , 1992 .

[40]  James Demmel,et al.  The Componentwise Distance to the Nearest Singular Matrix , 1992, SIAM J. Matrix Anal. Appl..

[41]  Svatopluk Poljak,et al.  Checking robust nonsingularity is NP-hard , 1993, Math. Control. Signals Syst..

[42]  S. Rump Validated solution of large linear systems , 1993 .

[43]  Zur Außen- und Inneneinschließung von Eigenwerten bei toleranzbehafteten Matrizen , 1993 .

[44]  Taylor-Verfahren für das algebraische Eigenwertproblem , 1993 .

[45]  Carlos Falcó Korn Die Erweiterung von Software-Bibliotheken zur effizienten Verifikation der Approximationslösung linearer Gleichungssysteme , 1993 .

[46]  H. Schwandt The Interval Buneman Algorithm for Arbitrary Block Dimension , 1993 .

[47]  Shin'ichi Oishi Two topics in nonlinear system analysis through fixed point theorems , 1994 .

[48]  Günter Mayer,et al.  Epsilon-inflation in verification algorithms , 1995 .

[49]  Olaf Knüppel Einschliessungsmethoden zur Bestimmung der Nullstellen nichtlinearer Gleichungssysteme und ihre Implementierung , 1995 .

[50]  Jiri Rohn,et al.  A note on checking regularity of interval matrices , 1995 .