Information-Theoretic Lower Bounds on the Oracle Complexity of Stochastic Convex Optimization
暂无分享,去创建一个
Martin J. Wainwright | Pradeep Ravikumar | Peter L. Bartlett | Alekh Agarwal | P. Bartlett | M. Wainwright | Pradeep Ravikumar | Alekh Agarwal
[1] Shun-ichi Amari,et al. A Theory of Pattern Recognition , 1968 .
[2] L. Lecam. Convergence of Estimates Under Dimensionality Restrictions , 1973 .
[3] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[4] R. Khasminskii. A Lower Bound on the Risks of Non-Parametric Estimates of Densities in the Uniform Metric , 1979 .
[5] John Darzentas,et al. Problem Complexity and Method Efficiency in Optimization , 1983 .
[6] Lucien Birgé. Approximation dans les espaces métriques et théorie de l'estimation , 1983 .
[7] Leslie G. Valiant,et al. A general lower bound on the number of examples needed for learning , 1988, COLT '88.
[8] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[9] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[10] Hans Ulrich Simon,et al. Bounds on the Number of Examples Needed for Learning Functions , 1994, SIAM J. Comput..
[11] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[12] Bin Yu. Assouad, Fano, and Le Cam , 1997 .
[13] Grace L. Yang,et al. Festschrift for Lucien Le Cam , 1997 .
[14] Yuhong Yang,et al. Information-theoretic determination of minimax rates of convergence , 1999 .
[15] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[16] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[17] Marc Teboulle,et al. Mirror descent and nonlinear projected subgradient methods for convex optimization , 2003, Oper. Res. Lett..
[18] Yurii Nesterov,et al. Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.
[19] Marion Kee,et al. Analysis , 2004, Machine Translation.
[20] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[21] Gábor Lugosi,et al. Prediction, learning, and games , 2006 .
[22] Y. Nesterov. Gradient methods for minimizing composite objective function , 2007 .
[23] Léon Bottou,et al. The Tradeoffs of Large Scale Learning , 2007, NIPS.
[24] Arkadi Nemirovski,et al. EFFICIENT METHODS IN CONVEX PROGRAMMING , 2007 .
[25] Elad Hazan,et al. Logarithmic regret algorithms for online convex optimization , 2006, Machine Learning.
[26] Nathan Srebro,et al. SVM optimization: inverse dependence on training set size , 2008, ICML '08.
[27] Lin Xiao,et al. Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization , 2009, J. Mach. Learn. Res..
[28] Martin J. Wainwright,et al. Information-theoretic lower bounds on the oracle complexity of convex optimization , 2009, NIPS.
[29] Yoram Singer,et al. Efficient Learning using Forward-Backward Splitting , 2009, NIPS.
[30] Y. Nesterov,et al. Primal-dual subgradient methods for minimizing uniformly convex functions , 2010, 1401.1792.
[31] Martin J. Wainwright,et al. Minimax Rates of Estimation for High-Dimensional Linear Regression Over $\ell_q$ -Balls , 2009, IEEE Transactions on Information Theory.
[32] Elad Hazan,et al. An optimal algorithm for stochastic strongly-convex optimization , 2010, 1006.2425.
[33] Maxim Raginsky,et al. Information-Based Complexity, Feedback and Dynamics in Convex Programming , 2010, IEEE Transactions on Information Theory.