Bioinspired Photonic Pigments from Colloidal Self‐Assembly

The natural world is a colorful environment. Stunning displays of coloration have evolved throughout nature to optimize camouflage, warning, and communication. The resulting flamboyant visual effects and remarkable dynamic properties, often caused by an intricate structural design at the nano- and microscale, continue to inspire scientists to unravel the underlying physics and to recreate the observed effects. Here, the methodologies to create bioinspired photonic pigments using colloidal self-assembly approaches are considered. The physics governing the interaction of light with structural features and natural examples of structural coloration are briefly introduced. It is then outlined how the self-assembly of colloidal particles, acting as wavelength-scale building blocks, can be particularly useful to replicate coloration from nature. Different coloration effects that result from the defined structure of the self-assembled colloids are introduced and it is highlighted how these optical properties can be translated into photonic pigments by modifications of the assembly processes. The importance of absorbing elements, as well as the role of surface chemistry and wettability to control structural coloration is discussed. Finally, approaches to integrate dynamic control of coloration into such self-assembled photonic pigments are outlined.

[1]  Shin‐Hyun Kim,et al.  Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly. , 2014, Angewandte Chemie.

[2]  Shufen Zhang,et al.  Synthesis of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color. , 2016, Nanoscale.

[3]  C. Hawker,et al.  Catechol-based layer-by-layer assembly of composite coatings: a versatile platform to hierarchical nano-materials. , 2015, Soft matter.

[4]  Jong-Dal Hong,et al.  Dopamine-melanin nanofilms for biomimetic structural coloration. , 2015, Biomacromolecules.

[5]  Jinghua Teng,et al.  In Situ "Doping" Inverse Silica Opals with Size-Controllable Gold Nanoparticles for Refractive Index Sensing , 2013 .

[6]  R. M. Parker,et al.  Hierarchical Self-Assembly of Cellulose Nanocrystals in a Confined Geometry , 2016, ACS nano.

[7]  Geoffrey A Ozin,et al.  Colloidal crystal films: advances in universality and perfection. , 2003, Journal of the American Chemical Society.

[8]  Mckenzie,et al.  Multilayer reflectors in animals using green and gold beetles as contrasting examples , 1998, The Journal of experimental biology.

[9]  Enrico Sowade,et al.  In‐Flight Inkjet Self‐Assembly of Spherical Nanoparticle Aggregates , 2012 .

[10]  Vinothan N Manoharan,et al.  Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules , 2014, Nature Communications.

[11]  Younan Xia,et al.  Monodispersed Colloidal Spheres: Old Materials with New Applications , 2000 .

[12]  Seung-Man Yang,et al.  Flexible, Angle‐Independent, Structural Color Reflectors Inspired by Morpho Butterfly Wings , 2012, Advanced materials.

[13]  Olivier Deparis,et al.  Scale coloration change following water absorption in the beetle Hoplia coerulea (Coleoptera). , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Manuel Schaffner,et al.  Combining Bottom-Up Self-Assembly with Top-Down Microfabrication to Create Hierarchical Inverse Opals with High Structural Order. , 2015, Small.

[15]  Joanna Aizenberg,et al.  Encoding complex wettability patterns in chemically functionalized 3D photonic crystals. , 2011, Journal of the American Chemical Society.

[16]  Wendy C. Crone,et al.  Art as an Avenue to Science Literacy: Teaching Nanotechnology through Stained Glass , 2010 .

[17]  Francesco Scotognella,et al.  Stacking the Nanochemistry Deck: Structural and Compositional Diversity in One‐Dimensional Photonic Crystals , 2009 .

[18]  Shu Yang,et al.  Angle-independent colours from spray coated quasi-amorphous arrays of nanoparticles: combination of constructive interference and Rayleigh scattering , 2014 .

[19]  Xiaoming Yang,et al.  Production of Structural Colors with High Contrast and Wide Viewing Angles from Assemblies of Polypyrrole Black Coated Polystyrene Nanoparticles. , 2016, ACS applied materials & interfaces.

[20]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[21]  A. Stein,et al.  Inverse Opal SiO2 Photonic Crystals as Structurally‐Colored Pigments with Additive Primary Colors , 2014 .

[22]  Andrew R. Parker,et al.  515 million years of structural colour , 2000 .

[23]  S. Mochrie,et al.  How non-iridescent colors are generated by quasi-ordered structures of bird feathers , 2009, 0912.4487.

[24]  C. López,et al.  Photonic Glasses: A Step Beyond White Paint , 2010, Advanced materials.

[25]  Dhananjay Dendukuri,et al.  The Synthesis and Assembly of Polymeric Microparticles Using Microfluidics , 2009 .

[26]  Zhongze Gu,et al.  Bio-inspired variable structural color materials. , 2012, Chemical Society reviews.

[27]  Nicolas Vogel,et al.  Advances in colloidal assembly: the design of structure and hierarchy in two and three dimensions. , 2015, Chemical reviews.

[28]  M. Srinivasarao Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths. , 1999, Chemical reviews.

[29]  Jin-Gyu Park,et al.  Absence of red structural color in photonic glasses, bird feathers, and certain beetles. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Lei Jiang,et al.  Bio-inspired design of multiscale structures for function integration , 2011 .

[31]  Christopher M. Yip,et al.  Color from colorless nanomaterials: Bragg reflectors made of nanoparticles , 2009 .

[32]  U. Steiner,et al.  Analysing photonic structures in plants , 2013, Journal of The Royal Society Interface.

[33]  D. Weitz,et al.  Dripping, Jetting, Drops, and Wetting: The Magic of Microfluidics , 2007 .

[34]  Shuichi Kinoshita,et al.  Structural colors in nature: the role of regularity and irregularity in the structure. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  S. Kinoshita,et al.  Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[36]  Matthias Karg,et al.  Time‐Controlled Colloidal Superstructures: Long‐Range Plasmon Resonance Coupling in Particle Monolayers , 2015, Advanced materials.

[37]  J. Sambles,et al.  Structurally assisted blackness in butterfly scales , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[38]  K. Landfester,et al.  Wafer‐Scale Fabrication of Ordered Binary Colloidal Monolayers with Adjustable Stoichiometries , 2011 .

[39]  Mathias Kolle,et al.  Photonic Structures Inspired by Nature , 2011 .

[40]  J. Baumberg,et al.  Optical Properties of Gyroid Structured Materials: From Photonic Crystals to Metamaterials , 2015 .

[41]  Zhenan Bao,et al.  A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing , 2015, Nature Communications.

[42]  Riccardo Sapienza,et al.  Photonic Glass: A Novel Random Material for Light , 2007 .

[43]  Andreas Stein,et al.  Colloidal photonic crystal pigments with low angle dependence. , 2010, ACS applied materials & interfaces.

[44]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[45]  M. Gallei,et al.  Redox- and mechano-chromic response of metallopolymer-based elastomeric colloidal crystal films , 2014 .

[46]  Hanne M. van der Kooij,et al.  Controlled, Bio-inspired Self-Assembly of Cellulose-Based Chiral Reflectors , 2014, Advanced optical materials.

[47]  E. Matijević,et al.  Monodispersed metal (hydrous) oxides - a fascinating field of colloid science , 1981 .

[48]  D. Choi,et al.  Patterned Colloidal Photonic Domes and Balls Derived from Viscous Photocurable Suspensions , 2008 .

[49]  Joanna Aizenberg,et al.  Wetting in color: colorimetric differentiation of organic liquids with high selectivity. , 2012, ACS nano.

[50]  D. Wiersma,et al.  Anisotropic Light Transport in White Beetle Scales , 2015 .

[51]  V. Manoharan Colloidal matter: Packing, geometry, and entropy , 2015, Science.

[52]  Bharat Bhushan,et al.  Structural coloration in nature , 2013 .

[53]  A. Parker,et al.  A vision for natural photonics , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[54]  Hui Cao,et al.  Biomimetic Isotropic Nanostructures for Structural Coloration , 2009, Advanced materials.

[55]  H. Kasukawa,et al.  Mechanism of light reflection in blue damselfish motile iridophore , 1987 .

[56]  U. Peschel,et al.  Painting by Numbers: Nanoparticle‐Based Colorants in the Post‐Empirical Age , 2011, Advanced materials.

[57]  G. Pfaff,et al.  Angle-Dependent Optical Effects Deriving from Submicron Structures of Films and Pigments. , 1999, Chemical reviews.

[58]  S. Vignolini,et al.  Flexible Photonic Cellulose Nanocrystal Films , 2016, Advanced materials.

[59]  Lei Jiang,et al.  Ultra-fast fabrication of colloidal photonic crystals by spray coating. , 2009, Macromolecular rapid communications.

[60]  Yuanjin Zhao,et al.  Supporting Information Multifunctional inverse opal particles for drug delivery and monitoring , 2015 .

[61]  Ian C. Freestone,et al.  AN INVESTIGATION OF THE ORIGIN OF THE COLOUR OF THE LYCURGUS CUP BY ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY , 1990 .

[62]  G. Yi,et al.  Angle- and strain-independent coloured free-standing films incorporating non-spherical colloidal photonic crystals. , 2015, Soft matter.

[63]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[64]  J. Aizenberg,et al.  Bioinspired micrograting arrays mimicking the reverse color diffraction elements evolved by the butterfly Pierella luna , 2014, Proceedings of the National Academy of Sciences.

[65]  Orlin D. Velev,et al.  Synthesis of Light‐Diffracting Assemblies from Microspheres and Nanoparticles in Droplets on a Superhydrophobic Surface , 2008 .

[66]  S. Doucet,et al.  Iridescence: a functional perspective , 2009, Journal of The Royal Society Interface.

[67]  D. Klinger,et al.  Shape Control of Soft Nanoparticles and Their Assemblies , 2017 .

[68]  E. Kumacheva,et al.  Coassembly of nanorods and nanospheres in suspensions and in stratified films. , 2015, Angewandte Chemie.

[69]  Markus Gallei,et al.  Fully reversible shape transition of soft spheres in elastomeric polymer opal films. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[70]  Jeremy J. Baumberg,et al.  Pointillist structural color in Pollia fruit , 2012, Proceedings of the National Academy of Sciences.

[71]  Joanna Aizenberg,et al.  A colloidoscope of colloid-based porous materials and their uses. , 2016, Chemical Society reviews.

[72]  J. Aizenberg,et al.  Hierarchical structural control of visual properties in self-assembled photonic-plasmonic pigments. , 2014, Optics Express.

[73]  J. Aizenberg,et al.  Tailoring re-entrant geometry in inverse colloidal monolayers to control surface wettability , 2016 .

[74]  S. Mochrie,et al.  Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species , 2012, Journal of The Royal Society Interface.

[75]  Katharina Landfester,et al.  A Convenient Method to Produce Close- and Non-close-Packed Monolayers using Direct Assembly at the Air-Water Interface and Subsequent Plasma-Induced Size Reduction , 2011 .

[76]  Martin Maldovan,et al.  25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons , 2013, Advanced materials.

[77]  Ulrich Jonas,et al.  Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the air/water interface , 2009 .

[78]  Seung‐Man Yang,et al.  Magnetoresponsive Discoidal Photonic Crystals Toward Active Color Pigments , 2014, Advanced materials.

[79]  Ayaka Kawamura,et al.  Full-Color Biomimetic Photonic Materials with Iridescent and Non-Iridescent Structural Colors , 2016, Scientific Reports.

[80]  Cefe López,et al.  Materials Aspects of Photonic Crystals , 2003 .

[81]  Oleg D. Lavrentovich,et al.  Periodic assembly of nanoparticle arrays in disclinations of cholesteric liquid crystals , 2017, Proceedings of the National Academy of Sciences.

[82]  G. Hill,et al.  Significance of a basal melanin layer to production of non-iridescent structural plumage color: evidence from an amelanotic Steller's jay (Cyanocitta stelleri) , 2006, Journal of Experimental Biology.

[83]  A. Parker,et al.  Natural photonics for industrial inspiration , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[84]  Shu Yang,et al.  Spray coating of superhydrophobic and angle-independent coloured films. , 2014, Chemical communications.

[85]  M. Milinkovitch,et al.  Photonic crystals cause active colour change in chameleons , 2015, Nature Communications.

[86]  Luis M. Liz-Marzán,et al.  Nanometals: Formation and color , 2004 .

[87]  Howon Lee,et al.  Real-time optofluidic synthesis of magnetochromatic microspheres for reversible structural color patterning. , 2011, Small.

[88]  S. Botchway,et al.  Measurement of long-range repulsive forces between charged particles at an oil-water interface. , 2002, Physical review letters.

[89]  Joanna Aizenberg,et al.  Three-Phase Co-assembly: In Situ Incorporation of Nanoparticles into Tunable, Highly Ordered, Porous Silica Films , 2014 .

[90]  M. Textor,et al.  Particle lithography from colloidal self-assembly at liquid-liquid interfaces. , 2010, ACS nano.

[91]  H. Nishihara,et al.  Production of colored pigments with amorphous arrays of black and white colloidal particles. , 2013, Angewandte Chemie.

[92]  K. Landfester,et al.  From soft to hard: the generation of functional and complex colloidal monolayers for nanolithography , 2012 .

[93]  K. Nassau The fifteen causes of color: The physics and chemistry of color , 1987 .

[94]  Su Chen,et al.  Triphase microfluidic-directed self-assembly: anisotropic colloidal photonic crystal supraparticles and multicolor patterns made easy. , 2012, Angewandte Chemie.

[95]  T. Seki,et al.  Structurally Coloured Secondary Particles Composed of Black and White Colloidal Particles , 2013, Scientific Reports.

[96]  Jean-Pol Vigneron,et al.  Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera) , 2009, Journal of The Royal Society Interface.

[97]  Klaus Mecke,et al.  Coexistence of both gyroid chiralities in individual butterfly wing scales of Callophrys rubi , 2015, Proceedings of the National Academy of Sciences.

[98]  Hiroshi Fudouzi,et al.  Tunable structural color in organisms and photonic materials for design of bioinspired materials , 2011, Science and technology of advanced materials.

[99]  Seung-Man Yang,et al.  Monodisperse Micrometer‐Scale Spherical Assemblies of Polymer Particles , 2002 .

[100]  Shigeaki Yamazaki,et al.  Bright structural color films independent of background prepared by the dip-coating of biomimetic melanin-like particles having polydopamine shell layers , 2017 .

[101]  Jin Hwan Ko,et al.  Wetting Characteristics of Insect Wing Surfaces , 2009 .

[102]  M. Gallei,et al.  Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials. , 2014, Macromolecular rapid communications.

[103]  Peter Spahn,et al.  Anisotropic Resonant Scattering from Polymer Photonic Crystals , 2012, Advanced materials.

[104]  Ullrich Steiner,et al.  Block copolymer self-assembly for nanophotonics. , 2015, Chemical Society reviews.

[105]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[106]  J. Baumberg,et al.  Nanoparticle-tuned structural color from polymer opals. , 2007, Optics express.

[107]  Salvatore Torquato,et al.  Designer disordered materials with large, complete photonic band gaps , 2009, Proceedings of the National Academy of Sciences.

[108]  Ludovico Cademartiri,et al.  From colour fingerprinting to the control of photoluminescence in elastic photonic crystals , 2006 .

[109]  Kazuaki Sakoda,et al.  Optical Properties of Photonic Crystals , 2001 .

[110]  Bai Yang,et al.  Colloidal cholesteric liquid crystal in spherical confinement , 2016, Nature Communications.

[111]  Seung-Man Yang,et al.  Microwave-assisted self-organization of colloidal particles in confining aqueous droplets. , 2006, Journal of the American Chemical Society.

[112]  M. Shawkey,et al.  Bio-Inspired Structural Colors Produced via Self-Assembly of Synthetic Melanin Nanoparticles. , 2015, ACS nano.

[113]  Andreas Stein,et al.  Optical properties of inverse opal photonic crystals , 2002 .

[114]  A. Khademhosseini,et al.  Art on the Nanoscale and Beyond , 2016, Advanced materials.

[115]  F. Schacher,et al.  Functional block copolymers: nanostructured materials with emerging applications. , 2012, Angewandte Chemie.

[116]  U. Peschel,et al.  Probing guided modes in a monolayer colloidal crystal on a flat metal film , 2012 .

[117]  Zhongze Gu,et al.  Spherical colloidal photonic crystals. , 2014, Accounts of chemical research.

[118]  Joanna Aizenberg,et al.  Assembly of large-area, highly ordered, crack-free inverse opal films , 2010, Proceedings of the National Academy of Sciences.

[119]  Serge Berthier,et al.  Iridescences: The Physical Colors of Insects , 2006 .

[120]  Yi Wang,et al.  Gold-Nanoparticle-Infiltrated Polystyrene Inverse Opals: A Three-Dimensional Platform for Generating Combined Optical Properties , 2006 .

[121]  J. Baumberg,et al.  Mimicking the colourful wing scale structure of the Papilio blumei butterfly. , 2010, Nature nanotechnology.

[122]  T. Taniguchi,et al.  Structural Color Tuning: Mixing Melanin-Like Particles with Different Diameters to Create Neutral Colors. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[123]  M. El-Sayed,et al.  Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. , 2006, Chemical Society reviews.

[124]  R. Wootton,et al.  Quantified interference and diffraction in single Morpho butterfly scales , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[125]  U. Steiner,et al.  Natural Helicoidal Structures: Morphology, Self-assembly and Optical Properties , 2014 .

[126]  Yuanjin Zhao,et al.  Free-Standing Photonic Crystal Films with Gradient Structural Colors. , 2016, ACS applied materials & interfaces.

[127]  Rodolfo H. Torres,et al.  Coherent light scattering by blue feather barbs , 1998, Nature.

[128]  Debra J. Audus,et al.  A facile synthesis of dynamic, shape-changing polymer particles. , 2014, Angewandte Chemie.

[129]  Benny Hallam,et al.  Brilliant Whiteness in Ultrathin Beetle Scales , 2007, Science.

[130]  Andreas Stein,et al.  Colloidal assembly: the road from particles to colloidal molecules and crystals. , 2011, Angewandte Chemie.

[131]  Thierry Savin,et al.  Recent advances in the biomimicry of structural colours. , 2016, Chemical Society reviews.

[132]  Andreas Stein,et al.  Tunable Colors in Opals and Inverse Opal Photonic Crystals , 2010 .

[133]  G. Ozin,et al.  Bottom-up assembly of photonic crystals. , 2013, Chemical Society reviews.

[134]  L. Qi,et al.  Preparation of iridescent colloidal crystal coatings with variable structural colors. , 2013, Optics express.

[135]  L. Liz‐Marzán,et al.  Ordered arrays of gold nanostructures from interfacially assembled Au@PNIPAM hybrid nanoparticles. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[136]  Joanna Aizenberg,et al.  The Optical Janus Effect: Asymmetric Structural Color Reflection Materials , 2017, Advanced materials.

[137]  J. Galisteo‐López,et al.  Self‐Assembled Photonic Structures , 2011, Advanced materials.

[138]  Orlin D. Velev,et al.  Assembly of Latex Particles by Using Emulsion Droplets. 3. Reverse (Water in Oil) System , 1997 .

[139]  Vicki L. Colvin,et al.  From Opals to Optics: Colloidal Photonic Crystals , 2001 .

[140]  A. G. Hiorns,et al.  Developing optical efficiency through optimized coating structure: biomimetic inspiration from white beetles. , 2009, Applied optics.

[141]  Younan Xia,et al.  Monodispersed Spherical Colloids of Titania: Synthesis, Characterization, and Crystallization , 2003 .

[142]  S. Takeuchi,et al.  Preparation of structurally colored, monodisperse spherical assemblies composed of black and white colloidal particles using a micro-flow-focusing device , 2015 .

[143]  S. Yoshioka,et al.  Production of colourful pigments consisting of amorphous arrays of silica particles. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[144]  Shin‐Hyun Kim,et al.  Colloidal assembly in Leidenfrost drops for noniridescent structural color pigments. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[145]  T. Taniguchi,et al.  Biomimetic non-iridescent structural color materials from polydopamine black particles that mimic melanin granules , 2015 .

[146]  Shuo Chen,et al.  Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis. , 2012, Environmental science & technology.

[147]  Matthias Rehahn,et al.  Reversible Light-, Thermo-, and Mechano-Responsive Elastomeric Polymer Opal Films , 2013 .

[148]  D. Janzen,et al.  Stable structural color patterns displayed on transparent insect wings , 2011, Proceedings of the National Academy of Sciences.

[149]  W. Knoll,et al.  Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition , 2008 .

[150]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[151]  Daeyeon Lee,et al.  Directed assembly of particles using microfluidic droplets and bubbles , 2013 .

[152]  André C. Arsenault,et al.  Photonic-crystal full-colour displays , 2007 .

[153]  A. Stein,et al.  Design and functionality of colloidal-crystal-templated materials--chemical applications of inverse opals. , 2013, Chemical Society reviews.

[154]  J. Aizenberg,et al.  Tunable Anisotropy in Inverse Opals and Emerging Optical Properties , 2014 .

[155]  Joanna Aizenberg,et al.  Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies , 2015, Proceedings of the National Academy of Sciences.

[156]  Teresa J. Feo,et al.  Structural absorption by barbule microstructures of super black bird of paradise feathers , 2018, Nature Communications.

[157]  X. H. Liu,et al.  Structural coloration and photonic pseudogap in natural random close-packing photonic structures. , 2010, Optics express.

[158]  Xiao-Han Wang,et al.  Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. , 2011, Chemical Society reviews.

[159]  P. Rudall,et al.  Structural colour from helicoidal cell-wall architecture in fruits of Margaritaria nobilis , 2016, Journal of The Royal Society Interface.

[160]  Peter Vukusic,et al.  Bright-White Beetle Scales Optimise Multiple Scattering of Light , 2014, Scientific Reports.

[161]  Disordered Cellulose-Based Nanostructures for Enhanced Light Scattering , 2017, ACS applied materials & interfaces.

[162]  J. Aizenberg,et al.  Directional wetting in anisotropic inverse opals. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[163]  G. Yi,et al.  Electrospray‐Assisted Fabrication of Uniform Photonic Balls , 2004 .

[164]  S. Kinoshita,et al.  Mechanism of variable structural colour in the neon tetra: quantitative evaluation of the Venetian blind model , 2011, Journal of The Royal Society Interface.