SHREC'10 Track: Robust Shape Retrieval

The 3D Shape Retrieval Contest 2010 (SHREC'10) robust shape retrieval benchmark simulates a retrieval scenario, in which the queries include multiple modifications and transformations of the same shape. The benchmark allows evaluating how algorithms cope with certain classes of transformations and what is the strength of the transformations that can be dealt with. The present paper is a report of the SHREC'10 robust shape retrieval benchmark results.

[1]  Leonidas J. Guibas,et al.  Shape Google: a computer vision approach to isometry invariant shape retrieval , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[2]  Andrea Fusiello,et al.  Visual Vocabulary Signature for 3D Object Retrieval and Partial Matching , 2009, 3DOR@Eurographics.

[3]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[4]  Paul L. Rosin,et al.  Rectilinearity of 3D Meshes , 2009, International Journal of Computer Vision.

[5]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[6]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[7]  Trevor Darrell,et al.  Fast pose estimation with parameter-sensitive hashing , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[8]  Afzal Godil,et al.  Visual Similarity Based 3D Shape Retrieval Using Bag-of-Features , 2010, 2010 Shape Modeling International Conference.

[9]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[10]  Giuseppe Patanè,et al.  Multi-scale Feature Spaces for Shape Processing and Analysis , 2010, 2010 Shape Modeling International Conference.

[11]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[12]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.