Reflectance Parameter Estimation and its Application to Surface Inspection

In this paper, we present a reflectance parameter estimation technique by using range and brightness and its relation, i.e. reflectance function. Because the reflectance function is quite complex and nonlinear, the parameter estimation is not straightforward. Therefore, we choose a coarse-to-fine approach to estimate the reflectance parameters. In the coarse step, the surface toughness is coarsely estimated by applying the partial linear method to the simplified Torrance-Sparrow reflectance model. Then the genetic algorithm is applied to the Wolff's reflectance model for more accurate estimation. In order to extend the dynamic range of CCD of laser finder, in this paper, we introduce the pseudo-brightness. The proposed reflectance parameter estimation algorithm is tested on the synthesized and real data. The results show that the estimated parameter using the synthesized data is very accurate. We also apply the proposed algorithm to inspect the flaws on shiny surfaces, which would be a promising method to discriminate between a wide range of surfaces.

[1]  Lawrence B. Wolff Diffuse reflection (intensity reflectance model) , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  Rui J. P. de Figueiredo,et al.  A Theory of Photometric Stereo for a Class of Diffuse Non-Lambertian Surfaces , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  T. Caelli,et al.  Inverting an illumination model from range and intensity maps , 1994 .

[4]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[5]  Lawrence B. Wolff,et al.  Relative brightness of specular and diffuse reflection , 1994 .

[6]  Takeo Kanade,et al.  Surface Reflection: Physical and Geometrical Perspectives , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Kosuke Sato,et al.  Determining Reflectance Properties of an Object Using Range and Brightness Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[9]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[10]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[11]  Takeo Kanade,et al.  Determining shape and reflectance of hybrid surfaces by photometric sampling , 1989, IEEE Trans. Robotics Autom..

[12]  William A. Sethares,et al.  Nonlinear parameter estimation via the genetic algorithm , 1994, IEEE Trans. Signal Process..

[13]  Marc Rioux,et al.  Color Reflectance Modeling Using a Polychromatic Laser Range Sensor , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[15]  P. Rousseeuw Least Median of Squares Regression , 1984 .