Extended Set of Local Binary Patterns for Rapid Object Detection

The paper presents two new encoding schemes for representation of the intensity function in a local neighborhood. The encoding produces binary codes, which are complementary to the standard local binary patterns (LBPs). Both new schemes preserve an important property of the LBP, the invariance to monotonic transformations of the intensity. Moreover, one of the schemes possesses invariance to gray scale inversion. The utility of the new encodings is demonstrated in the framework of AdaBoost learning. The new LBP encoding schemes were tested on the face detection, car detection and gender recognition problems using the CMU-MIT frontal face dataset, the UIUCCar dataset and the FERET dataset respectively. Experimental results show that the proposed encoding methods improve both the accuracy and the speed of the final classifier. In all tested tasks, a combination of the encoding schemes outperforms the original one. No LBP encoding scheme dominates, the relative importance of the schemes is problem-specific.

[1]  Hanqing Lu,et al.  Face detection using improved LBP under Bayesian framework , 2004, Third International Conference on Image and Graphics (ICIG'04).

[2]  Marko Heikkilä,et al.  Description of interest regions with local binary patterns , 2009, Pattern Recognit..

[3]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[4]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Xihong Wu,et al.  Boosting Local Binary Pattern (LBP)-Based Face Recognition , 2004, SINOBIOMETRICS.

[6]  Shumeet Baluja,et al.  Boosting Sex Identification Performance , 2005, International Journal of Computer Vision.

[7]  Shengcai Liao,et al.  Face Detection Based on Multi-Block LBP Representation , 2007, ICB.

[8]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[9]  Wen Gao,et al.  Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[10]  Javier Ruiz-del-Solar,et al.  Gender Classification of Faces Using Adaboost , 2006, CIARP.

[11]  Shu Liao,et al.  Texture Classification by using Advanced Local Binary Patterns and Spatial Distribution of Dominant Patterns , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[12]  Changyin Sun,et al.  Gender Classification Based on Boosting Local Binary Pattern , 2006, ISNN.

[13]  Matti Pietikäinen,et al.  Boosted multi-resolution spatiotemporal descriptors for facial expression recognition , 2009, Pattern Recognit. Lett..

[14]  Jan Šochman,et al.  WaldBoost – Learning for Time Constrained Sequential Detection ( Version 1 . 0 ) , 2005 .

[15]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[16]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[17]  Wen Gao,et al.  Locally Assembled Binary (LAB) feature with feature-centric cascade for fast and accurate face detection , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Christoph H. Lampert,et al.  Beyond sliding windows: Object localization by efficient subwindow search , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  David G. Lowe,et al.  Multiclass Object Recognition with Sparse, Localized Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[20]  Shengcai Liao,et al.  Learning Multi-scale Block Local Binary Patterns for Face Recognition , 2007, ICB.

[21]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Andreas Ernst,et al.  Face detection with the modified census transform , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[24]  Jiri Matas,et al.  Weighted Sampling for Large-Scale Boosting , 2008, BMVC.

[25]  Matti Pietikäinen,et al.  Local Binary Pattern Descriptors for Dynamic Texture Recognition , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[26]  Ming-Hsuan Yang,et al.  Learning Gender with Support Faces , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Dan Roth,et al.  Learning to detect objects in images via a sparse, part-based representation , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Bernt Schiele,et al.  Integrating representative and discriminant models for object category detection , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.