Numerical simulation of surface explosions over dry, cohesionless soil

Abstract Numerical modeling of the effects of explosions relies on suitable material models appropriate for large deformation problems. Available results of a wide range of static and dynamic tests on Nevada #120 sand, completed as part of an earlier project (VELACS), were utilized to calibrate a numerical model for sand, suitable for modeling surface explosions. A fully-coupled Euler–Lagrange Interaction was utilized to correctly model pressures created by the explosion simultaneously with the large deformations in the soil. The model was used to study two cases – the first with a 2-D axisymmetric case of crater formation; and the second with a 3-D case of surface explosion above an underground tunnel. The results of numerical analyses were found to closely match those from other analyses, field tests, and centrifuge model tests.