Kronecker positivity and 2-modular representation theory
暂无分享,去创建一个
[1] Greta Panova,et al. Kronecker products, characters, partitions, and the tensor square conjectures , 2013, 1304.0738.
[2] Pham Huu Tiep,et al. Conjugacy action, induced representations and the Steinberg square for simple groups of Lie type , 2012, 1209.1768.
[3] Alain Lascoux,et al. Hecke algebras at roots of unity and crystal bases of quantum affine algebras , 1996 .
[4] P. Shan,et al. Categorifications and cyclotomic rational double affine Hecke algebras , 2013, 1305.4456.
[5] Michela Varagnolo,et al. On the decomposition matrices of the quantized Schur algebra , 1998 .
[6] M. Fayers,et al. The reducible Specht modules for the Hecke algebra $\mathcal{H}_{\mathbb{C},{-}1}(\mathfrak{S}_{n})$ , 2011, 1106.5602.
[7] Christian Ikenmeyer. The Saxl conjecture and the dominance order , 2015, Discret. Math..
[8] Joan F. Tent,et al. Alperin–McKay natural correspondences in solvable and symmetric groups for the prime $$p=2$$p=2 , 2017, 1707.02846.
[9] B. Webster,et al. ROUQUIER’S CONJECTURE AND DIAGRAMMATIC ALGEBRA , 2013, Forum of Mathematics, Sigma.
[10] Matthias Christandl,et al. The Spectra of Quantum States and the Kronecker Coefficients of the Symmetric Group , 2006 .
[11] A diagrammatic approach to categorification of quantum groups II , 2009 .
[12] M. Fayers,et al. THE REDUCIBLE SPECHT MODULES FOR THE HECKE ALGEBRAHC,−1(Sn) , 2011 .
[13] S. Lyle. Some q-analogues of the Carter-Payne theorem , 2006, math/0604216.
[14] G. James,et al. The Irreducible Specht Modules in Characteristic 2 , 1999 .
[15] M. Fayers. Reducible Specht modules , 2004 .
[16] A. Klyachko. QUANTUM MARGINAL PROBLEM AND REPRESENTATIONS OF THE SYMMETRIC GROUP , 2004, quant-ph/0409113.
[17] Jorn B. Olson. McKay numbers and heights of characters. , 1976 .
[18] Gordon James,et al. A q‐Analogue of the Jantzen–Schaper Theorem , 1997 .
[19] T. Okuyama,et al. The heights of irreducible Brauer characters in 2-blocks of the symmetric groups , 2012 .
[20] Chris D. Godsil,et al. ALGEBRAIC COMBINATORICS , 2013 .
[21] I. Losev. Proof of Varagnolo–Vasserot conjecture on cyclotomic categories O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mat , 2013, Selecta Mathematica.
[22] Victor Ginzburg,et al. On the category 𝒪 for rational Cherednik algebras , 2002 .
[23] J. Brundan,et al. Graded decomposition numbers for cyclotomic Hecke algebras , 2009, 0901.4450.
[24] R. Rouquier. 2-Kac-Moody algebras , 2008, 0812.5023.
[25] I. Losev. Proof of Varagnolo–Vasserot conjecture on cyclotomic categories $${\mathcal {O}}$$O , 2016 .
[26] M. Fayers,et al. Some reducible Specht modules for Iwahori–Hecke algebras of type A with q=−1 , 2008, 0806.1774.
[27] Wolfgang Soergel,et al. Koszul Duality Patterns in Representation Theory , 1996 .
[28] Kai Meng Tan,et al. A v-analogue of Peel's theorem☆ , 2004 .
[29] Mark Sellke,et al. The Saxl conjecture for fourth powers via the semigroup property , 2015, 1511.02387.
[30] M. Fayers. Irreducible Specht modules for Hecke algebras of type A , 2005 .
[31] Andrew Mathas,et al. Hecke algebras and Schur algebras of the symmetric group , 1999 .
[32] M. Fayers. An algorithm for semistandardising homomorphisms , 2011, 1109.4522.
[33] Gordon James,et al. The Representation Theory of the Symmetric Groups , 1977 .
[34] Decompositions of some Specht modules I , 2018, 1810.10275.
[35] G. James,et al. Hecke Algebras of TypeAwithq=−1 , 1996 .
[36] Weiqiang Wang,et al. Graded Specht modules , 2009, 0901.0218.
[37] Jørn B. Olsson,et al. Combinatorics and representations of finite groups , 1993 .
[38] J. Brundan,et al. Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras , 2008, 0808.2032.
[39] G. James,et al. The Representation Theory of the Symmetric Group , 2009 .
[40] Gordon James,et al. Representations of Hecke Algebras of General Linear Groups , 1986 .
[41] M. Fayers. q-Analogues of regularisation theorems for linear and projective representations of the symmetric group , 2007 .
[42] G. Murphy. On decomposability of some Specht modules for symmetric groups , 1980 .
[43] C. Bessenrodt. Critical classes, Kronecker products of spin characters, and the Saxl conjecture , 2017, 1704.00707.
[44] C. Bessenrodt,et al. Multiplicity-free Kronecker products of characters of the symmetric groups , 2016, 1609.03596.
[45] M. Fayers,et al. Generalised column removal for graded homomorphisms between Specht modules , 2014, 1404.4415.
[46] G. James,et al. $q$-tensor space and $q$-Weyl modules , 1991 .
[47] Greta Panova,et al. Bounds on certain classes of Kronecker and q-binomial coefficients , 2017, J. Comb. Theory, Ser. A.
[48] A. Kleshchev,et al. An Interpretation of the Lascoux–Leclerc–Thibon Algorithm and Graded Representation Theory , 2009, 0910.5940.
[49] Gordon James,et al. Rouquier blocks , 2005 .
[50] Aram W. Harrow,et al. Nonzero Kronecker Coefficients and What They Tell us about Spectra , 2007 .
[51] M. Christandl,et al. Recoupling Coefficients and Quantum Entropies , 2012, 1210.0463.
[52] Some new decomposable Specht modules , 2011, 1110.0296.
[53] Michael Walter,et al. Computing Multiplicities of Lie Group Representations , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.
[54] M. Fayers. On the irreducible Specht modules for Iwahori--Hecke algebras of type A with $q=-1$ , 2009, 0911.0342.
[55] Victor Ginzburg,et al. Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism , 2000 .
[56] Raphael Rouquier. q-Schur algebras and complex reflection groups, I , 2005 .