The microbial communities of sulfur caves: A newly appreciated geologically driven system on Earth and potential model for Mars

[1]  N. Pace,et al.  Molecular phylogentic analysis of a bacterial community in Sulphur River, Parker Cave, Kentucky , 1998 .

[2]  A. Reysenbach,et al.  Microbiology of ancient and modern hydrothermal systems. , 2001, Trends in microbiology.

[3]  K. Konhauser Bacterial iron biomineralisation in nature , 1997 .

[4]  Klaus Keil,et al.  Geochemical and mineralogical interpretation of the Viking inorganic chemical results , 1977 .

[5]  J. Costerton,et al.  Bacterial biofilms in nature and disease. , 1987, Annual review of microbiology.

[6]  K. Konhauser Diversity of bacterial iron mineralization , 1998 .

[7]  R. Rieder,et al.  Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer , 2004, Science.

[8]  R. Amann,et al.  Microbial Ecology of an Extreme Acidic Environment, the Tinto River , 2003, Applied and Environmental Microbiology.

[9]  Niels B. Ramsing,et al.  Sulfate-Reducing Bacteria and Their Activities in Cyanobacterial Mats of Solar Lake (Sinai, Egypt) , 1998, Applied and Environmental Microbiology.

[10]  A. K. Baird,et al.  Is the Martian lithosphere sulfur rich , 1979 .

[11]  Henry L. Ehrlich,et al.  HOW MICROBES INFLUENCE MINERAL GROWTH AND DISSOLUTION , 1996 .

[12]  E. Delong,et al.  Environmental diversity of bacteria and archaea. , 2001, Systematic biology.

[13]  D E Northup,et al.  Cave biosignature suites: microbes, minerals, and Mars. , 2001, Astrobiology.

[14]  W. G. Wright,et al.  Bacteria, fungi and biokarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico , 1995 .

[15]  Charles S. Cockell,et al.  Impact‐induced microbial endolithic habitats , 2002 .

[16]  Harold J. Morowitz,et al.  Annihilation of ecosystems by large asteroid impacts on the early Earth , 1989, Nature.

[17]  G. Wächtershäuser,et al.  The case for the chemoautotrophic origin of life in an iron-sulfur world , 1990, Origins of life and evolution of the biosphere.

[18]  Gordon A. McFeters,et al.  Sulfate‐reducing and methanogenic bacteria from deep aquifers in montana , 1981 .

[19]  Y. Cohen,et al.  Diurnal Cycles of Sulfate Reduction under Oxic Conditions in Cyanobacterial Mats , 1992, Applied and environmental microbiology.

[20]  D. Natvig,et al.  Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. , 2003, Environmental microbiology.

[21]  T. Onstott,et al.  Microbes deep inside the earth. , 1996 .

[22]  R. Popa,et al.  Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem , 1997, Applied and environmental microbiology.

[23]  Karsten Pedersen,et al.  The deep subterranean biosphere , 1993 .

[24]  M. Menichetti,et al.  Occurrence of hypogenic caves in a karst region: Examples from central Italy , 1995 .

[25]  R. Amann Who is out there? Microbial aspects of biodiversity. , 2000, Systematic and applied microbiology.

[26]  W. Boynton,et al.  Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey , 2002, Science.

[27]  Jan-Peter Muller,et al.  Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars' equator , 2005, Nature.

[28]  Sean C. Solomon,et al.  Heterogeneities in the thickness of the elastic lithosphere of Mars - Constraints on heat flow and internal dynamics , 1990 .

[29]  K. Stetter,et al.  Pyrite formation linked with hydrogen evolution under anaerobic conditions , 1990, Nature.

[30]  R Sullivan,et al.  The Spirit Rover's Athena science investigation at Gusev Crater, Mars. , 2004, Science.

[31]  C. Dahm,et al.  Geomicrobiology of Cave Ferromanganese Deposits: A Field and Laboratory Investigation , 2005 .

[32]  G. Wächtershäuser Biomolecules: the origin of their optical activity. , 1991, Medical hypotheses.

[33]  S. D’Hondt,et al.  Surface-water acidification and extinction at the Cretaceous-Tertiary boundary , 1994 .

[34]  T. Phelps,et al.  Methods for recovery of deep terrestrial subsurface sediments for microbiological studies , 1989 .

[35]  M. Wagner,et al.  Filamentous “Epsilonproteobacteria” Dominate Microbial Mats from Sulfidic Cave Springs , 2003, Applied and Environmental Microbiology.

[36]  Satish C. Gupta,et al.  Shock-induced vaporization of anhydrite and global cooling from the K/T impact , 2001 .

[37]  A. Palmer Origin and morphology of limestone caves , 1991 .

[38]  E. Ruby,et al.  Chemolithotrophic Sulfur-Oxidizing Bacteria from the Galapagos Rift Hydrothermal Vents , 1981, Applied and environmental microbiology.

[39]  Marco Giuranna,et al.  Detection of Methane in the Atmosphere of Mars , 2004, Science.

[40]  Robert L. Tokar,et al.  Global Distribution of Neutrons from Mars: Results from Mars Odyssey , 2002, Science.

[41]  J W Costerton,et al.  The bacterial glycocalyx in nature and disease. , 1981, Annual review of microbiology.

[42]  P. Bennett,et al.  Microbial contributions to cave formation: New insights into sulfuric acid speleogenesis , 2004 .

[43]  D. Lovley,et al.  Rates of Microbial Metabolism in Deep Coastal Plain Aquifers , 1990, Applied and environmental microbiology.

[44]  S. Giovannoni,et al.  Sources of nutrients and energy for a deep biosphere on Mars , 1999 .

[45]  T. Encrenaz,et al.  Atmospheric photochemistry above possible martian hot spots , 2004 .

[46]  S. Bottrell,et al.  Invasion of a karst aquifer by hydrothermal fluids: evidence from stable isotopic compositions of cave mineralization , 2001 .

[47]  B. Clark Solar-driven chemical energy source for a Martian biota , 1979, Origins of life.

[48]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.

[49]  Daumas Sylvie,et al.  A bacteriological study of geothermal spring waters dating from the dogger and trias period in the Paris Basin , 1986 .

[50]  B. Roe,et al.  Bacterial Diversity and Sulfur Cycling in a Mesophilic Sulfide-Rich Spring , 2003, Applied and Environmental Microbiology.

[51]  R. Libra,et al.  Sulfur isotopes and hydrochemical variations in spring waters of southern Indiana, U.S.A. , 1983 .

[52]  Victor R. Baker,et al.  Erosion by catastrophic floods on Mars and Earth , 1974 .

[53]  J. Overmann,et al.  Microbial interactions involving sulfur bacteria: implications for the ecology and evolution of bacterial communities. , 2000, FEMS microbiology reviews.

[54]  Pascal Lee,et al.  The biology of impact craters — a review , 2002, Biological reviews of the Cambridge Philosophical Society.

[55]  R. Huber,et al.  Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium ammonifex degensii gen. nov. sp. nov. , 1996, Systematic and applied microbiology.

[56]  V. Polyak,et al.  Alunite, Natroalunite and Hydrated Halloysite in Carlsbad Cavern and Lechuguilla Cave, New Mexico , 1996 .

[57]  Tobias Owen,et al.  Detection of methane in the martian atmosphere: evidence for life? , 2004 .

[58]  G. Cody,et al.  Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. , 2000, Science.

[59]  P. Provencio,et al.  Age and origin of carlsbad cavern and related caves from 40Ar/39Ar of alunite , 1998, Science.

[60]  C P McKay,et al.  On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. , 1992, Icarus.

[61]  T. C. Kane,et al.  A Chemoautotrophically Based Cave Ecosystem , 1996, Science.

[62]  V. R. Baker,et al.  Ancient oceans, ice sheets and the hydrological cycle on Mars , 1991, Nature.

[63]  D. Canfield,et al.  Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat , 1993, Geochimica et cosmochimica acta.

[64]  D. Kelly,et al.  Oxidative metabolism of inorganic sulfur compounds by bacteria , 1997, Antonie van Leeuwenhoek.

[65]  S. Macko,et al.  Food web structure and the role of epilithic biofilms in cave streams , 2003 .

[66]  H. Jannasch,et al.  Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites , 1993 .