A new approach to fluid–structure interaction within graphics hardware accelerated smooth particle hydrodynamics considering heterogeneous particle size distribution

[1]  G. R. Johnson,et al.  A CONSTITUTIVE MODEL AND DATA FOR METALS SUBJECTED TO LARGE STRAINS, HIGH STRAIN RATES AND HIGH TEMPERATURES , 2018 .

[2]  Anirban Dhar,et al.  Coupled incompressible Smoothed Particle Hydrodynamics model for continuum-based modelling sediment transport , 2017 .

[3]  K. Liao,et al.  Corrected First-Order Derivative ISPH in Water Wave Simulations , 2017 .

[4]  S. Kalidindi,et al.  Crystal Plasticity Modeling of Microstructure Evolution and Mechanical Fields During Processing of Metals Using Spectral Databases , 2017 .

[5]  Furen Ming,et al.  Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model , 2017 .

[6]  Wil H. A. Schilders,et al.  An Improved CSPM Approach for Accurate Second-Derivative Approximations with SPH , 2017 .

[7]  Chong Peng,et al.  Multiphase SPH modeling of free surface flow in porous media with variable porosity , 2017 .

[8]  Tetsuro Goda,et al.  Numerical Study on Seepage-induced Failure of Caisson Type Breakwaters Using a Stabilized ISPH , 2017 .

[9]  Jeff Larkin,et al.  Parallel programming with OpenACC , 2017 .

[10]  Qiang Xu,et al.  SPH model for fluid–structure interaction and its application to debris flow impact estimation , 2017, Landslides.

[11]  A. Hartmaier,et al.  A crystal plasticity smooth-particle hydrodynamics approach and its application to equal-channel angular pressing simulation , 2016 .

[12]  Peter Wriggers,et al.  Numerical simulation of fluid‐structure interaction problems by a coupled SPH‐FEM approach , 2016 .

[13]  I. Beyerlein,et al.  Transitioning rate sensitivities across multiple length scales: Microstructure-property relationships in the Taylor cylinder impact test on zirconium , 2016 .

[14]  Hua Liu,et al.  Two-phase SPH simulation of fluid–structure interactions , 2016 .

[15]  Xin Liu,et al.  2D Numerical ISPH Wave Tank for Complex Fluid–Structure Coupling Problems , 2016 .

[16]  D. Violeau,et al.  Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future , 2016 .

[17]  Alexander Panchenko,et al.  Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics , 2016, J. Comput. Phys..

[18]  I. Beyerlein,et al.  Anisotropic modeling of structural components using embedded crystal plasticity constructive laws within finite elements , 2016 .

[19]  Martin Siemann,et al.  Fluid-structure interaction by the mixed SPH-FE method with application to aircraft ditching , 2015 .

[20]  Zhen Chen,et al.  An SPH model for multiphase flows with complex interfaces and large density differences , 2015, J. Comput. Phys..

[21]  Stephen M. Longshaw,et al.  DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH) , 2015, Comput. Phys. Commun..

[22]  Mjh Martijn Anthonissen,et al.  An improved CSPM approximation for multi-dimensional second-order derivatives , 2015 .

[23]  Xu Li,et al.  Artificial viscosity in smoothed particle hydrodynamics simulation of sound interference , 2014 .

[24]  Mingming Tong,et al.  An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow , 2014 .

[25]  A. Tybulewicz,et al.  Equations of State for Solids at High Pressures and Temperatures , 2014 .

[26]  P. Armitage,et al.  Convergence of simulations of self-gravitating accretion discs II: Sensitivity to the implementation of radiative cooling and artificial viscosity , 2013, 1311.7355.

[27]  T. Nishita,et al.  A Velocity Correcting Method for Volume Preserving Viscoelastic Fluids , 2014 .

[28]  D. Deb,et al.  Failure Process of Brittle Rock Using Smoothed Particle Hydrodynamics , 2013 .

[29]  Alexandre M. Tartakovsky,et al.  A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy , 2013 .

[30]  Ricardo A. Lebensohn,et al.  Modeling mechanical response and texture evolution of α-uranium as a function of strain rate and temperature using polycrystal plasticity , 2013 .

[31]  Tomonari Furukawa,et al.  Multidimensional discontinuous SPH method and its application to metal penetration analysis , 2013 .

[32]  Arnaud G. Malan,et al.  An accelerated, fully-coupled, parallel 3D hybrid finite-volume fluid-structure interaction scheme , 2013 .

[33]  Leigh McCue,et al.  Free-surface flow interactions with deformable structures using an SPH–FEM model , 2012 .

[34]  Stephen A. Jarvis,et al.  Accelerating Hydrocodes with OpenACC, OpenCL and CUDA , 2012, 2012 SC Companion: High Performance Computing, Networking Storage and Analysis.

[35]  Alan Gray,et al.  Porting and scaling OpenACC applications on massively-parallel, GPU-accelerated supercomputers , 2012 .

[36]  Christian Terboven,et al.  OpenACC - First Experiences with Real-World Applications , 2012, Euro-Par.

[37]  Vishal Mehra,et al.  Tensile Instability and Artificial Stresses in Impact Problems in SPH , 2012 .

[38]  Yan Bao,et al.  Combined interface boundary condition method for fluid–rigid body interaction , 2012 .

[39]  Adnan Eghtesad,et al.  Study of dynamic behavior of ceramic–metal FGM under high velocity impact conditions using CSPM method , 2012 .

[40]  Vincent Faucher,et al.  Dynamic simulation of damage‐fracture transition in smoothed particles hydrodynamics shells , 2012 .

[41]  J. Monaghan Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .

[42]  Michael Wolfe,et al.  The PGI Fortran and C 99 OpenACC Compilers , 2012 .

[43]  Paul W. Cleary,et al.  A mesh-free approach for fracture modelling of gravity dams under earthquake , 2012, International Journal of Fracture.

[44]  Rui Gao,et al.  Numerical modelling of regular wave slamming on subface of open-piled structures with the corrected SPH method , 2012 .

[45]  Antonio J. Gil,et al.  On continuum immersed strategies for Fluid-Structure Interaction , 2012 .

[46]  Sebastian Heimbs,et al.  Review: Computational methods for bird strike simulations: A review , 2011 .

[47]  M. Mahzoon,et al.  Predicting fracture and fragmentation in ceramic using a thermo-mechanical basis , 2011 .

[48]  Y. Amini,et al.  A new model to solve fluid–hypo-elastic solid interaction using the smoothed particle hydrodynamics (SPH) method , 2011 .

[49]  Ivica Smojver,et al.  Bird strike damage analysis in aircraft structures using Abaqus/Explicit and coupled Eulerian Lagrangian approach , 2011 .

[50]  Guirong Liu,et al.  A coupled ES-FEM/BEM method for fluid–structure interaction problems , 2011 .

[51]  Ivica Smojver,et al.  Numerical simulation of bird strike damage prediction in airplane flap structure , 2010 .

[52]  Lixu Gu,et al.  A Point-Based Simulation Framework for Minimally Invasive Surgery , 2010, ISMBS.

[53]  Krish Thiagarajan,et al.  An SPH projection method for simulating fluid-hypoelastic structure interaction , 2009 .

[54]  Afonso Paiva,et al.  Particle-based viscoplastic fluid/solid simulation , 2009, Comput. Aided Des..

[55]  Ted Belytschko,et al.  Immersed particle method for fluid–structure interaction , 2009 .

[56]  Andrew J. Gunnion,et al.  Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge , 2008 .

[57]  D. Fullwood,et al.  Computationally efficient database and spectral interpolation for fully plastic Taylor-type crystal plasticity calculations of face-centered cubic polycrystals , 2008 .

[58]  Mario Pagliaro,et al.  Fundamentals of Shock Wave Propagation in Solids , 2008 .

[59]  Zhiyi Zhang,et al.  Dynamic behavior and sound transmission analysis of a fluid–structure coupled system using the direct-BEM/FEM , 2007 .

[60]  O. von Estorff,et al.  Efficient non‐linear solid–fluid interaction analysis by an iterative BEM/FEM coupling , 2005 .

[61]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[62]  Shu-ichiro Inutsuka,et al.  Shear Flows in Smoothed Particle Hydrodynamics , 2002 .

[63]  P. W. Randles,et al.  Normalized SPH with stress points , 2000 .

[64]  J. Monaghan SPH without a Tensile Instability , 2000 .

[65]  J. K. Chen,et al.  A corrective smoothed particle method for boundary value problems in heat conduction , 1999 .

[66]  J. K. Chen,et al.  An improvement for tensile instability in smoothed particle hydrodynamics , 1999 .

[67]  Hyun Moo Koh,et al.  Fluid–structure interaction analysis of 3‐D rectangular tanks by a variationally coupled BEM–FEM and comparison with test results , 1998 .

[68]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[69]  K. Thoma,et al.  Computational simulation of the hypervelocity impact of al-spheres on thin plates of different materials , 1997 .

[70]  R. P. Ingel,et al.  An approach for tension instability in smoothed particle hydrodynamics (SPH) , 1995 .

[71]  W. Benz,et al.  Simulations of brittle solids using smooth particle hydrodynamics , 1995 .

[72]  J. Monaghan,et al.  SPH simulation of multi-phase flow , 1995 .

[73]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[74]  W. Benz,et al.  Explicit 3D continuum fracture modeling with smooth particle hydrodynamics , 1993 .

[75]  G. R. Johnson,et al.  Incorporation of an SPH option into the EPIC code for a wide range of high velocity impact computations , 1993 .

[76]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[77]  J. Monaghan,et al.  Shock simulation by the particle method SPH , 1983 .

[78]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[79]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[80]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .