High-quality InP nanoneedles grown on silicon

In this letter, we report the growth of self-assembled, catalyst-free InP nanoneedles on Si substrate by low-temperature metal-organic chemical vapor deposition. With a characteristic core-shell growth mode, the nanostructure size is scalable with growth time, and InP/InGaAs/InP double-heterostructure is demonstrated. Single crystalline wurtzite InP nanoneedles essentially free of stacking faults and polytypism are achieved. The internal quantum efficiency of as-grown unpassivated InP nanoneedles can reach as high as 15% at room temperature. Laser oscillation is realized from single InP nanoneedle under optical pump. These promising results reveal the potential of integrating InP nanoneedle optoelectronic devices with traditional silicon.

[1]  C. J. Keavney,et al.  Emitter structures in MOCVD InP solar cells , 1990, IEEE Conference on Photovoltaic Specialists.

[2]  J. Gilman,et al.  Nanotechnology , 2001 .

[3]  Yoshio Watanabe,et al.  Site-controlled InP nanowires grown on patterned Si substrates , 2004 .

[4]  Elif Ertekin,et al.  Equilibrium limits of coherency in strained nanowire heterostructures , 2005 .

[5]  X. Ren,et al.  Experimental and theoretical investigations on the phase purity of GaAs zincblende nanowires , 2010 .

[6]  H. Shibata Negative Thermal Quenching Curves in Photoluminescence of Solids , 1998 .

[7]  Connie Chang-Hasnain,et al.  Nanolasers Grown on Silicon , 2011, 1101.3305.

[8]  Tsunemasa Taguchi,et al.  Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes , 2003 .

[9]  H. Jackson,et al.  The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires , 2009, Nanotechnology.

[10]  V. Dubrovskii,et al.  Growth kinetics and crystal structure of semiconductor nanowires , 2008 .

[11]  C. Chang-Hasnain,et al.  Atomically sharp catalyst-free wurtzite GaAs /AlGaAs nanoneedles grown on silicon , 2008 .

[12]  C. Chang-Hasnain,et al.  Unconventional growth mechanism for monolithic integration of III-V on silicon. , 2013, ACS nano.

[13]  T. Ito,et al.  An Empirical Potential Approach to Wurtzite–Zinc-Blende Polytypism in Group III–V Semiconductor Nanowires , 2006 .

[14]  N. V. Sibirev,et al.  Critical diameters and temperature domains for MBE growth of III–V nanowires on lattice mismatched substrates , 2009 .

[15]  Connie Chang-Hasnain,et al.  Nanolasers grown on silicon-based MOSFETs. , 2012, Optics express.

[16]  C. Chang-Hasnain,et al.  Optical properties of InP nanowires on Si substrates with varied synthesis parameters , 2008 .

[17]  Sorab K. Ghandhi,et al.  Surface recombination velocity and lifetime in InP , 1991 .

[18]  L. Samuelson,et al.  Monolithic GaAs/InGaP nanowire light emitting diodes on silicon , 2008, Nanotechnology.

[19]  D. Zeze,et al.  Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy , 2010 .

[20]  C. Chang-Hasnain,et al.  Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission. , 2009, Optics express.

[21]  Connie J. Chang-Hasnain,et al.  Critical diameter for III-V nanowires grown on lattice-mismatched substrates , 2007 .

[22]  David E. Aspnes,et al.  RECOMBINATION AT SEMICONDUCTOR SURFACES AND INTERFACES , 1983 .

[23]  Gilles Patriarche,et al.  Why does wurtzite form in nanowires of III-V zinc blende semiconductors? , 2007, Physical review letters.

[24]  Growth kinetics of GaAs nanoneedles on silicon and sapphire substrates , 2011 .

[25]  S. Ishizuka,et al.  Negative thermal quenching of photoluminescence in ZnO , 2006 .

[26]  G. B. Stringfellow,et al.  MOVPE growth of InP using isobutylphosphine and tert-butylphosphine , 1986 .

[27]  Takashi Fukui,et al.  Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core–shell nanowires on Si(111) substrate , 2009, Nanotechnology.