High-quality InP nanoneedles grown on silicon
暂无分享,去创建一个
Connie J. Chang-Hasnain | C. Chang-Hasnain | F. Ren | K. Ng | Hao Sun | Kun Li | Fan Ren | Kar Wei Ng | Kun Li | Hao Sun
[1] C. J. Keavney,et al. Emitter structures in MOCVD InP solar cells , 1990, IEEE Conference on Photovoltaic Specialists.
[2] J. Gilman,et al. Nanotechnology , 2001 .
[3] Yoshio Watanabe,et al. Site-controlled InP nanowires grown on patterned Si substrates , 2004 .
[4] Elif Ertekin,et al. Equilibrium limits of coherency in strained nanowire heterostructures , 2005 .
[5] X. Ren,et al. Experimental and theoretical investigations on the phase purity of GaAs zincblende nanowires , 2010 .
[6] H. Shibata. Negative Thermal Quenching Curves in Photoluminescence of Solids , 1998 .
[7] Connie Chang-Hasnain,et al. Nanolasers Grown on Silicon , 2011, 1101.3305.
[8] Tsunemasa Taguchi,et al. Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes , 2003 .
[9] H. Jackson,et al. The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires , 2009, Nanotechnology.
[10] V. Dubrovskii,et al. Growth kinetics and crystal structure of semiconductor nanowires , 2008 .
[11] C. Chang-Hasnain,et al. Atomically sharp catalyst-free wurtzite GaAs /AlGaAs nanoneedles grown on silicon , 2008 .
[12] C. Chang-Hasnain,et al. Unconventional growth mechanism for monolithic integration of III-V on silicon. , 2013, ACS nano.
[13] T. Ito,et al. An Empirical Potential Approach to Wurtzite–Zinc-Blende Polytypism in Group III–V Semiconductor Nanowires , 2006 .
[14] N. V. Sibirev,et al. Critical diameters and temperature domains for MBE growth of III–V nanowires on lattice mismatched substrates , 2009 .
[15] Connie Chang-Hasnain,et al. Nanolasers grown on silicon-based MOSFETs. , 2012, Optics express.
[16] C. Chang-Hasnain,et al. Optical properties of InP nanowires on Si substrates with varied synthesis parameters , 2008 .
[17] Sorab K. Ghandhi,et al. Surface recombination velocity and lifetime in InP , 1991 .
[18] L. Samuelson,et al. Monolithic GaAs/InGaP nanowire light emitting diodes on silicon , 2008, Nanotechnology.
[19] D. Zeze,et al. Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy , 2010 .
[20] C. Chang-Hasnain,et al. Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission. , 2009, Optics express.
[21] Connie J. Chang-Hasnain,et al. Critical diameter for III-V nanowires grown on lattice-mismatched substrates , 2007 .
[22] David E. Aspnes,et al. RECOMBINATION AT SEMICONDUCTOR SURFACES AND INTERFACES , 1983 .
[23] Gilles Patriarche,et al. Why does wurtzite form in nanowires of III-V zinc blende semiconductors? , 2007, Physical review letters.
[24] Growth kinetics of GaAs nanoneedles on silicon and sapphire substrates , 2011 .
[25] S. Ishizuka,et al. Negative thermal quenching of photoluminescence in ZnO , 2006 .
[26] G. B. Stringfellow,et al. MOVPE growth of InP using isobutylphosphine and tert-butylphosphine , 1986 .
[27] Takashi Fukui,et al. Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core–shell nanowires on Si(111) substrate , 2009, Nanotechnology.