Existence results for second order impulsive functional differential inclusions

[1]  S. Nadler,et al.  Multi-valued contraction mappings in generalized metric spaces , 1970 .

[2]  L. Kantorovich,et al.  THE FIXED-POINT PRINCIPLE , 1982 .

[3]  D. R. Smart Fixed Point Theorems , 1974 .

[4]  Yong-Kui Chang,et al.  Existence results for second-order impulsive functional differential inclusions , 2006 .

[5]  M. Benchohra,et al.  ON FIRST ORDER IMPULSIVE SEMILINEAR FUNCTIONAL DIFFERENTIAL INCLUSIONS , 2003 .

[6]  M. Benchohra,et al.  Initial boundary value problems for second order impulsive functional differential inclusions , 2003 .

[7]  Shouchuan Hu,et al.  Handbook of multivalued analysis , 1997 .

[8]  M. Benchohra,et al.  INITIAL AND BOUNDARY VALUE PROBLEMS FOR NONCONVEX VALUED MULTIVALUED FUNCTIONAL DIFFERENTIAL EQUATIONS , 2003 .

[9]  M. Benchohra,et al.  Nonresonance impulsive higher order functional nonconvex-valued differential inclusions , 2002 .

[10]  V. Lakshmikantham,et al.  Theory of Impulsive Differential Equations , 1989, Series in Modern Applied Mathematics.

[11]  Marlène Frigon,et al.  Theoremes d'existence de solutions d'inclusions differentielles , 1995 .

[12]  Donal O'Regan,et al.  Boundary value problems for second order impulsive differential equations using set-valued maps , 1995 .

[13]  M. Benchohra,et al.  On second-order multivalued impulsive functional differential inclusions in Banach spaces , 2001 .

[14]  M. Benchohra,et al.  Impulsive neutral functional differential inclusions with variable times. , 2003 .

[15]  Alberto Bressan,et al.  Extensions and selections of maps with decomposable values , 1988 .

[16]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .

[17]  K. Deimling Multivalued Differential Equations , 1992 .