Parameter identification of steel-concrete composite beams by finite element method

Steel-concrete composite elements are very often used as main elements of floors or in bridge engineering as main carrying girders. This paper presents computational models and an analysis of natural vibrations conducted on steel-concrete composite beams. Simulation results were compared with experimental research results for beams in groups B1 and B2. In the group of beams B1 a connection that consisted of steel stud connectors was used whereas perforated steel slats were used in group B2. For modelling and calculations, Abaqus platform and Matlab environment were used and the finite element method (FEM) was applied. Each beam model was made in two versions that differ in the approach to modelling connection. In the first modelling approach beam elements were used whereas in the second spring elements were applied. Both models, after parameter identification, provided very good consistency with experimental research results.