Diophantine equations in control - A survey
暂无分享,去创建一个
[1] M. Sebek,et al. Polynomial solution of 2D Kalman-Bucy filtering problem , 1992 .
[2] C. Desoer,et al. Algebraic theory for robust stability of interconnected systems: Necessary and sufficient conditions , 1982, 1982 21st IEEE Conference on Decision and Control.
[3] Stephen P. Boyd,et al. Linear controller design: limits of performance , 1991 .
[4] Vladimír Kučera,et al. Stationary LQG control of singular systems , 1986 .
[5] V. Peterka,et al. Predictor-based self-tuning control , 1982, Autom..
[6] Václav Peterka,et al. On steady state minimum variance control strategy , 1972, Kybernetika.
[7] O. Zariski,et al. Commutative Algebra, Vol. I , 1959 .
[8] Vladimír Strejc,et al. Synthese von Regelungssystemen mit Prozessrechner , 1967 .
[9] T. Kaczorek. Two-Dimensional Linear Systems , 1985 .
[10] M. Šebek. n-D polynomial matrix equations , 1988 .
[11] F. J. Kraus,et al. FIFO Stable Control Systems , 1993 .
[12] V. Kučera. Exact model matching, polynomial equation approach , 1981 .
[13] L. Pernebo. An algebraic theory for design of controllers for linear multivariable systems--Part I: Structure matrices and feedforward design , 1981 .
[14] Jacob Hammer,et al. Fraction representations of non-linear systems: a simplified approach , 1987 .
[15] Vladimír Kucera,et al. Closed-loop stability of discrete linear single-variable systems , 1974, Kybernetika.
[16] Michael J. Grimble,et al. Optimal multivariable LQG control using a single diophantine equation , 1987 .
[17] Vladimír Kucera. Algebraic theory of discrete optimal control for multivariable systems [I.] , 1974, Kybernetika.
[18] Vladimír Kucera. Transfer-function solution of the Kalman-Bucy filtering problem , 1978, Kybernetika.
[19] Michael A. Arbib,et al. Topics in Mathematical System Theory , 1969 .
[20] M. Vidyasagar,et al. Algebraic and topological aspects of feedback stabilization , 1980 .
[21] Bruce A. Francis,et al. The internal model principle of control theory , 1976, Autom..
[22] L. Pernebo. An Algebraic Theory for the Design of Controllers for Linear Multirate Systems Part I: Structure Matrices and Feedforward Design , 1981 .
[23] G. Stein,et al. Multivariable feedback design: Concepts for a classical/modern synthesis , 1981 .
[24] Vladimír Kučera. Shortest correlation control strategy , 1977 .
[25] V. Kučera. Stability of Discrete Linear Feedback Systems , 1975 .
[26] Vladimír Kucera. Algebraic theory of discrete optimal control for single-variable systems. I. Preliminaries , 1973, Kybernetika.
[27] M. Vidyasagar. Control System Synthesis : A Factorization Approach , 1988 .
[28] C. Desoer,et al. The feedback interconnection of lumped linear time-invariant systems☆ , 1975 .
[29] M. M. Newmann,et al. Polynomial approach to Wiener filtering , 1988 .
[30] Anders Ahlén,et al. Wiener filter design using polynomial equations , 1991, IEEE Trans. Signal Process..
[31] C. Desoer,et al. Multivariable Feedback Systems , 1982 .
[32] R. Kálmán. Mathematical description of linear dynamical systems , 1963 .
[33] M. Grimble. Polynomial systems approach to optimal linear filtering and prediction , 1985 .
[34] Michael J. Grimble,et al. Implicit and explicit LQG self-tuning controllers , 1984, Autom..
[35] A. S. Morse. Ring Models for Delay-Differential Systems , 1974 .
[36] Michael Sebek,et al. A polynomial solution to regulation and tracking. II. Stochastic problem , 1984, Kybernetika.
[37] J. Hammer. Stabilization of non-linear systems† , 1986 .
[38] Vladimír Kucera. Internal properness and stability in linear systems , 1986, Kybernetika.
[39] M. Heymann,et al. Linear Feedback—An Algebraic Approach , 1978 .
[40] Michael Sebek,et al. A polynomial solution to regulation and tracking. I. Deterministic problem , 1984, Kybernetika.
[41] Kenneth J. Hunt. Stochastic Optimal Control Theory with Application in Self-Tuning Control , 1989 .
[42] K. J. Hunt,et al. The standard ℋ2-optimal control problem: a polynomial solution , 1992 .
[43] Vladimír Kučera,et al. Analysis and design of discrete linear control systems , 1991 .
[44] E. Kamen,et al. A transfer function approach to linear time-varying discrete-time systems , 1982, 1982 21st IEEE Conference on Decision and Control.
[45] David Clarke,et al. Self-tuning control , 1979 .
[46] N. Jacobson. Lectures In Abstract Algebra , 1951 .
[47] Michael Sebek,et al. Polynomial design of stochastic tracking systems , 1982 .
[48] Vladimír Kucera,et al. Algebraic theory of discrete optimal control for single-variable systems. II. Open-loop control , 1973, Kybernetika.
[49] Vladimír Kucera,et al. Linear quadratic control. State space vs. polynomial equations , 1983, Kybernetika.
[50] C. Desoer,et al. An algebra of transfer functions for distributed linear time-invariant systems , 1978 .
[51] Vladimír Ku Era. A dead-beat servo problem , 1980 .
[52] H. Kushner. Introduction to Stochastic Control Theory (Karl J. Astrom) , 1972 .
[53] Michael J. Grimble,et al. Optimal H∞ robustness and the relationship to LQG design problems , 1986 .
[54] C. Desoer,et al. Feedback Systems: Input-Output Properties , 1975 .
[55] F. Lewis. A survey of linear singular systems , 1986 .
[56] Michael J. Grimble. H/sub infinity / filtering problem and the relationship between polynomial and state-space results , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.
[57] H. Kwakernaak. The polynomial approach to H ???-optimal regulation , 1991 .
[58] Julius T. Tou,et al. Digital and sampled-data control systems , 1963 .
[59] Bruce A. Francis,et al. Algebraic and topological aspects of the regulator problem for lumped linear systems , 1983, Autom..
[60] Björn Wittenmark,et al. On Self Tuning Regulators , 1973 .
[61] Hartmut Logemann,et al. Multivariable feedback design : J. M. Maciejowski , 1991, Autom..
[62] R. Chabour,et al. Stabilization of nonlinear systems: A bilinear approach , 1993, Math. Control. Signals Syst..
[63] Dante C. Youla,et al. Modern Wiener--Hopf design of optimal controllers Part I: The single-input-output case , 1976 .
[64] John B. Moore,et al. On the Youla-Kucera parametrization for nonlinear systems , 1990 .
[65] Jan Jezek. An algebraic approach to the synthesis of control for linear discrete meromorphic systems , 1989, Kybernetika.
[66] E. Kamen,et al. Stabilization of time-delay systems using finite-dimensional compensators , 1985, IEEE Transactions on Automatic Control.
[67] Edoardo Mosca,et al. On the polynomial equations for the MIMO LQ stochastic regulator , 1990 .
[68] Vladimír Kučera,et al. Stochastic multivariable control: A polynomial equation approach , 1980 .
[69] C. Desoer,et al. Feedback system design: The fractional representation approach to analysis and synthesis , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[70] H. Kwakernaak. Minimax frequency domain performance and robustness optimization of linear feedback systems , 1985 .
[71] Jan C. Willems,et al. From time series to linear system - Part I. Finite dimensional linear time invariant systems , 1986, Autom..
[72] T. Kailath,et al. A generalized state-space for singular systems , 1981 .
[73] Michael Sebek. Characteristic polynomial assignment for delay-differential systems via 2-D polynomial equations , 1986, 1986 25th IEEE Conference on Decision and Control.
[74] Jan C. Willems,et al. Models for Dynamics , 1989 .
[75] Vladimír Kučera,et al. Disturbance rejection: A polynomial approach , 1983 .
[76] Kameshwar Poolla,et al. Stabilizability and stable-proper factorizations for linear time-varying systems , 1987 .
[77] Karl Johan Åström,et al. Robustness of a design method based on assignment of poles and zeros , 1980 .
[78] V. Kučera,et al. Discrete Linear Control: The Polynomial Equation Approach , 1981, IEEE Transactions on Systems, Man, and Cybernetics.
[79] Minghua Chen,et al. Algebraic theory for robust stability of interconnected systems: Necessary and sufficient conditions , 1982, CDC 1982.
[80] Michael Sebek,et al. On deadbeat controllers , 1984 .
[81] M. Fliess. Some basic structural properties of generalized linear systems , 1991 .
[82] Anders Ahlén,et al. Optimal deconvolution based on polynomial methods , 1989, IEEE Trans. Acoust. Speech Signal Process..
[83] M. Hautus. The Formal Laplace Transform for Smooth Linear Systems , 1976 .
[84] W. Wonham. Linear Multivariable Control: A Geometric Approach , 1974 .