Recurrent Biparental Hydatidiform Mole: Additional Evidence for a 1.1-Mb Locus in 19q13.4 and Candidate Gene Analysis

[1]  T. Miyamoto,et al.  Isolation and Expression Analysis of the Human RNH2 Gene Encoding Ribonuclease Inhibitor 2 , 2002, Journal of Assisted Reproduction and Genetics.

[2]  I. B. Van den Veyver,et al.  Recurrent pregnancy loss due to familial and non‐familial habitual molar pregnancy , 2003, International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics.

[3]  R. Fisher,et al.  Genetic refinement and physical mapping of a biparental complete hydatidiform mole locus on chromosome 19q13.4. , 2003, Journal of medical genetics.

[4]  M. Seoud,et al.  Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles. , 2003, Human molecular genetics.

[5]  Wei Yan,et al.  RFPL4 interacts with oocyte proteins of the ubiquitin-proteasome degradation pathway , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Terrence S. Furey,et al.  The UCSC Genome Browser Database , 2003, Nucleic Acids Res..

[7]  E. Sheridan,et al.  Lack of involvement of known DNA methyltransferases in familial hydatidiform mole implies the involvement of other factors in establishment of imprinting in the human female germline , 2003, BMC Genetics.

[8]  N. Sebire,et al.  The maternally transcribed gene p57(KIP2) (CDNK1C) is abnormally expressed in both androgenetic and biparental complete hydatidiform moles. , 2002, Human molecular genetics.

[9]  J. Bertin,et al.  Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF‐κB and caspase‐1 , 2002, FEBS letters.

[10]  E. Li,et al.  Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. , 2002, Development.

[11]  D. Bonthron,et al.  A global disorder of imprinting in the human female germ line , 2002, Nature.

[12]  L. Nelson,et al.  A human homologue of mouse Mater, a maternal effect gene essential for early embryonic development. , 2002, Human reproduction.

[13]  M. Matzuk,et al.  The ret finger protein-like 4 gene, Rfpl4, encodes a putative E3 ubiquitin-protein ligase expressed in adult germ cells , 2002, Mechanisms of Development.

[14]  L. Stubbs,et al.  Imprinting and evolution of two Kruppel-type zinc-finger genes, ZIM3 and ZNF264, located in the PEG3/USP29 imprinted domain. , 2001, Genomics.

[15]  Fang Yang,et al.  An abundance of X-linked genes expressed in spermatogonia , 2001, Nature Genetics.

[16]  F. Ding,et al.  Genomic Imprinting Disrupted by a Maternal Effect Mutation in the Dnmt1 Gene , 2001, Cell.

[17]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[18]  T. Al-Hussaini,et al.  Habitual complete molar pregnancy: a case report. , 2001, Reproductive biomedicine online.

[19]  L. Nelson,et al.  Mater, a maternal effect gene required for early embryonic development in mice , 2000, Nature Genetics.

[20]  E. Calzolari,et al.  Mole maker phenotype: possible narrowing of the candidate region , 2000, European Journal of Human Genetics.

[21]  R. Fisher,et al.  Repetitive complete hydatidiform mole can be biparental in origin and either male or female. , 2000, Human reproduction.

[22]  L. Stubbs,et al.  Exon sharing of a novel human zinc-finger gene, ZIM2, and paternally expressed gene 3 (PEG3). , 2000, Genomics.

[23]  M. Seoud,et al.  A familial case of recurrent hydatidiform molar pregnancies with biparental genomic contribution , 1999, Human Genetics.

[24]  M. Seoud,et al.  Genetic mapping of a maternal locus responsible for familial hydatidiform moles. , 1999, Human molecular genetics.

[25]  J. Lupski,et al.  A novel locus for Leber congenital amaurosis on chromosome 14q24 , 1998, Human Genetics.

[26]  H. Zoghbi,et al.  Genomic structure of a human holocytochrome c-type synthetase gene in Xp22.3 and mutation analysis in patients with Rett syndrome. , 1998, American journal of medical genetics.

[27]  L. Ashworth,et al.  The human homolog of a mouse-imprinted gene, Peg3, maps to a zinc finger gene-rich region of human chromosome 19q13.4. , 1997, Genome research.

[28]  L. Shaffer,et al.  Diagnosis of CMT1A duplications and HNPP deletions by interphase FISH: implications for testing in the cytogenetics laboratory. , 1997, American journal of medical genetics.

[29]  L. Ashworth,et al.  Detailed comparative map of human chromosome 19q and related regions of the mouse genome. , 1996, Genomics.

[30]  E Branscomb,et al.  Comparative analysis of a conserved zinc finger gene cluster on human chromosome 19q and mouse chromosome 7. , 1996, Genomics.

[31]  M. Seoud,et al.  RECURRENT MOLAR PREGNANCIES IN A FAMILY WITH EXTENSIVE INTERMARRIAGE: REPORT OF A FAMILY AND REVIEW OF THE LITERATURE , 1995, Obstetrics and gynecology.

[32]  L. Bolund,et al.  Genetic analysis of repeated, biparental, diploid, hydatidiform moles. , 1993, Cancer genetics and cytogenetics.

[33]  J. Curtin,et al.  Molecular genetic analysis of complete hydatidiform moles. , 1991, Cancer genetics and cytogenetics.

[34]  T. Schroeder-Kurth,et al.  Familiäres Blasenmolen-Syndrom und genetische Aspekte dieser gestörten Trophoblastentwicklung , 1991 .

[35]  T. Schroeder-Kurth,et al.  [Familial hydatidiform mole syndrome and genetic aspects of this disturbed trophoblast development]. , 1991, Geburtshilfe und Frauenheilkunde.

[36]  A. E. Szulman Partial Hydatidiform Mole , 1987 .

[37]  C. la Vecchia,et al.  Familial trophoblastic disease: case report. , 1984, American journal of obstetrics and gynecology.

[38]  C. S. Rao,et al.  Familial occurrence of trophoblastic disease ‐ report of recurrent molar pregnancies in sisters in three families , 1980, Clinical genetics.

[39]  L. Honoré The syndromes of hydatidiform mole , 1979 .

[40]  U. Surti,et al.  The syndromes of hydatidiform mole. I. Cytogenetic and morphologic correlations. , 1978, American journal of obstetrics and gynecology.