Status of the mid-IR ELT imager and spectrograph (METIS)

The Mid-Infrared ELT Imager and Spectrograph (METIS) is one of three first light instruments on the ELT. It will provide high-contrast imaging and medium resolution, slit-spectroscopy from 3 – 19um, as well as high resolution (R ~ 100,000) integral field spectroscopy from 2.9-5.3µm. All modes observe at the diffraction limit of the ELT, by means of adaptive optics, yielding angular resolutions of a few tens of milliarcseconds. The range of METIS science is broad, from Solar System objects to active galactic nuclei (AGN). We will present an update on the main science drivers for METIS: circum-stellar disks and exoplanets. The METIS project is now in full steam, approaching its preliminary design review (PDR) in 2018. In this paper we will present the current status of its optical, mechanical and thermal design as well as operational aspects. We will also discuss the challenges of building an instrument for the ELT, and the required technologies.

[1]  Pierre-Olivier Lagage,et al.  METIS : the mid-infrared E-ELT imager and spectrograph , 2008 .

[2]  Bernhard Brandl,et al.  The fast spin-rotation of a young extra-solar planet , 2014 .

[3]  Remko Stuik,et al.  Combining high-dispersion spectroscopy with high contrast imaging : Probing rocky planets around our nearest neighbors , 2015, 1503.01136.

[4]  L. Testi,et al.  Trapping dust particles in the outer regions of protoplanetary disks , 2011, 1112.2349.

[5]  Tibor Agócs,et al.  The warm calibration unit of METIS: optical design and principle of operation , 2018, Astronomical Telescopes + Instrumentation.

[6]  Shigeyuki Sako,et al.  “Slow-scanning” in Ground-based Mid-infrared Observations , 2018, 1804.04271.

[7]  Tibor Agócs,et al.  A review of high contrast imaging modes for METIS , 2018, Astronomical Telescopes + Instrumentation.

[8]  Lucas Labadie,et al.  The spatial extent of Polycyclic Aromatic Hydrocarbons emission in the Herbig star HD 179218 , 2017, 1711.05202.

[9]  Ramon Vink,et al.  Optical tests of the Si immersed grating demonstrator for METIS , 2016, Astronomical Telescopes + Instrumentation.

[10]  Bernhard R. Brandl,et al.  Development and characterization of a 2D precision cryogenic chopper for METIS , 2014, Astronomical Telescopes and Instrumentation.

[11]  Dimitri Mawet,et al.  Three years of harvest with the vector vortex coronagraph in the thermal infrared , 2016, Astronomical Telescopes + Instrumentation.

[12]  W. Kausch,et al.  Molecfit: A general tool for telluric absorption correction - I. Method and application to ESO instruments , 2015, 1501.07239.

[13]  Olivier Absil,et al.  Preliminary optical design for the common fore optics of METIS , 2016, Astronomical Telescopes + Instrumentation.

[14]  AMAGUCHI,et al.  “SLOW-SCANNING” IN GROUND-BASED MID-INFRARED OBSERVATIONS , 2018 .

[15]  Tibor Agócs,et al.  The calibration unit of the mid-infrared E-ELT instrument METIS , 2018, Astronomical Telescopes + Instrumentation.

[16]  Bernhard R. Brandl,et al.  Fast spin of the young extrasolar planet β Pictoris b , 2014, Nature.

[17]  Peter Bizenberger,et al.  End to end optical design and wavefront error simulation of METIS , 2018, Astronomical Telescopes + Instrumentation.

[18]  W. Kausch,et al.  Molecfit: A general tool for telluric absorption correction - II. Quantitative evaluation on ESO-VLT/X-Shooterspectra , 2015, 1501.07265.

[19]  Konstantin Batygin,et al.  Constraints on the spin evolution of young planetary-mass companions , 2017 .

[20]  M. Min,et al.  Imaging diagnostics for transitional discs , 2013, 1309.1039.

[21]  Peter Bizenberger,et al.  Single conjugate adaptive optics for METIS , 2018, Astronomical Telescopes + Instrumentation.

[22]  Remko Stuik,et al.  Status of the mid-infrared E-ELT imager and spectrograph METIS , 2016, Astronomical Telescopes + Instrumentation.

[23]  Sascha P. Quanz,et al.  Direct detection of exoplanets in the 3–10 μm range with E-ELT/METIS , 2014, International Journal of Astrobiology.

[24]  M. Wells,et al.  Spectral slicing for METIS: an efficient alternative to cross-dispersion , 2016, Astronomical Telescopes + Instrumentation.

[25]  Cambridge,et al.  Asymmetric transition disks: Vorticity or eccentricity? , 2013, 1304.1736.

[26]  Ian J. M. Crossfield,et al.  Doppler Imaging of Exoplanets and Brown Dwarfs , 2014, 1404.7853.

[27]  M. Damasso,et al.  The gaia survey contribution to EChO target selection and characterization , 2014, 1404.3844.