Probabilistic Abstract Interpretation

Abstract interpretation has been widely used for verifying properties of computer systems. Here, we present a way to extend this framework to the case of probabilistic systems. The probabilistic abstraction framework that we propose allows us to systematically lift any classical analysis or verification method to the probabilistic setting by separating in the program semantics the probabilistic behavior from the (non-)deterministic behavior. This separation provides new insights for designing novel probabilistic static analyses and verification methods. We define the concrete probabilistic semantics and propose different ways to abstract them. We provide examples illustrating the expressiveness and effectiveness of our approach.

[1]  Valérie Issarny,et al.  Formal Methods for Eternal Networked Software Systems , 2011, Lecture Notes in Computer Science.

[2]  Patrick Cousot,et al.  Constructive design of a hierarchy of semantics of a transition system by abstract interpretation , 2002, MFPS.

[3]  David Monniaux,et al.  Abstract Interpretation of Probabilistic Semantics , 2000, SAS.

[4]  Michael J. A. Smith Probabilistic Abstract Interpretation of Imperative Programs using Truncated Normal Distributions , 2008, Electron. Notes Theor. Comput. Sci..

[5]  Eric C. R. Hehner,et al.  A probability perspective , 2011, Formal Aspects of Computing.

[6]  Sean P. Meyn Control Techniques for Complex Networks: Workload , 2007 .

[7]  Marta Z. Kwiatkowska,et al.  Automated Verification Techniques for Probabilistic Systems , 2011, SFM.

[8]  Franck van Breugel,et al.  Concur 2008 - Concurrency Theory , 2009 .

[9]  Annabelle McIver,et al.  Probabilistic predicate transformers , 1996, TOPL.

[10]  Mahesh Viswanathan,et al.  Least upper bounds for probability measures and their applications to abstractions , 2008, Inf. Comput..

[11]  Kim G. Larsen,et al.  Reduction and Refinement Strategies for Probabilistic Analysis , 2002, PAPM-PROBMIV.

[12]  Chris Hankin,et al.  Probabilistic /lambda-calculus and Quantitative Program Analysis , 2005, J. Log. Comput..

[13]  Herbert Wiklicky,et al.  Probabilistic Abstract Interpretation and Statistical Testing (Extended Abstract) , 2002 .

[14]  Dexter Kozen,et al.  Semantics of probabilistic programs , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[15]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[16]  Herbert Wiklicky,et al.  Probabilistic Abstract Interpretation and Statistical Testing , 2002, PAPM-PROBMIV.

[17]  Patrick Cousot,et al.  Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation , 1992, PLILP.

[18]  Luca de Alfaro,et al.  Symbolic Magnifying Lens Abstraction in Markov Decision Processes , 2008, 2008 Fifth International Conference on Quantitative Evaluation of Systems.

[19]  Pierre Deransart,et al.  Programming Languages Implementation and Logic Programming , 1989, Lecture Notes in Computer Science.

[20]  Eric C. R. Hehner,et al.  Probabilistic Predicative Programming , 2004, MPC.

[21]  Francesca Levi,et al.  Approximating Probabilistic Behaviors of Biological Systems Using Abstract Interpretation , 2009, FBTC@ICALP.

[22]  Lijun Zhang,et al.  Best Probabilistic Transformers , 2010, VMCAI.

[23]  Marta Z. Kwiatkowska,et al.  Using probabilistic model checking in systems biology , 2008, PERV.

[24]  Patrick Cousot,et al.  Systematic design of program analysis frameworks , 1979, POPL.

[25]  Heinz Koeppl,et al.  Automatic Reduction of Stochastic Rules‐Based Models in a Nutshell , 2010 .

[26]  Patrick Cousot,et al.  Why does Astrée scale up? , 2009, Formal Methods Syst. Des..

[27]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[28]  David Monniaux,et al.  Abstract interpretation of programs as Markov decision processes , 2003, Sci. Comput. Program..

[29]  Annabelle McIver,et al.  Abstraction, Refinement and Proof for Probabilistic Systems , 2004, Monographs in Computer Science.

[30]  Patrick Cousot,et al.  Abstract Interpretation Frameworks , 1992, J. Log. Comput..

[31]  Herbert Wiklicky,et al.  Concurrent constraint programming: towards probabilistic abstract interpretation , 2000, PPDP '00.

[32]  Achim Klenke,et al.  Probability theory - a comprehensive course , 2008, Universitext.

[33]  Annabelle McIver,et al.  Linear-Invariant Generation for Probabilistic Programs: - Automated Support for Proof-Based Methods , 2010, SAS.

[34]  Kousha Etessami,et al.  Analysis of Recursive Game Graphs Using Data Flow Equations , 2004, VMCAI.