Pea-Sized mmW Transceivers: QFN-?Based Packaging Concepts for Millimeter-Wave Transceivers

Enormous technological progress accomplished over the last several decades has facilitated the use of millimeter-wave (mmW) frequencies for mass-produced products such as automotive radars, industrial sensors, highspeed data communication links, and medical devices. The main enablers are new semiconductor technologies, with constantly improving cut-off frequencies reaching several hundred gigahertz. However, the dominant limiting factor for the mass production of low-cost mmW systems above 100 GHz is that suitable packaging technologies are not yet available. Still, a dramatic increase in research and development is taking place in the area of mmW packaging. The goal of this article is to provide a short overview of the topic and then present one particular approach in detail: the idea of integrating a complete mmW front end, including the antenna, into one small solderable surfacemount device (SMD).

[1]  Wolfgang Winkler,et al.  An Integrated 122-GHz Antenna Array With Wire Bond Compensation for SMT Radar Sensors , 2013, IEEE Transactions on Antennas and Propagation.

[2]  T. Zwick,et al.  Flip-chip package with integrated antenna on a polyimide substrate for a 122-GHz bistatic radar IC , 2013, 2013 7th European Conference on Antennas and Propagation (EuCAP).

[3]  Thomas Merkle,et al.  Broadband interconnect design for silicon-based system-in-package applications up to 170 GHz , 2013, 2013 European Microwave Conference.

[4]  B. Gaucher,et al.  SiGe bipolar transceiver circuits operating at 60 GHz , 2005, IEEE Journal of Solid-State Circuits.

[5]  J. Cressler,et al.  A D-Band Micromachined End-Fire Antenna in 130-nm SiGe BiCMOS Technology , 2015, IEEE Transactions on Antennas and Propagation.

[6]  Thomas Zwick,et al.  Integrated 122-GHz Antenna on a Flexible Polyimide Substrate With Flip Chip Interconnect , 2013, IEEE Transactions on Antennas and Propagation.

[7]  T. Zwick,et al.  Determination of the complex permittivity of packaging materials at millimeter-wave frequencies , 2006, IEEE Transactions on Microwave Theory and Techniques.

[8]  D. Rutledge Substrate-lens coupled antennas for millimeter and submillimeter waves , 1985, IEEE Antennas and Propagation Society Newsletter.

[9]  Duixian Liu,et al.  Antenna-in-Package Design for Wirebond Interconnection to Highly Integrated 60-GHz Radios , 2009, IEEE Transactions on Antennas and Propagation.

[10]  F. E. Gardiol,et al.  The SSFIP: a global concept for high performance broadband planar antennas , 1989 .

[11]  David M. Pour Considerations for Millimeter Wave Printed Antennas , 1983 .

[12]  Thomas Merkle,et al.  Polymer Multichip Module Process Using 3-D Printing Technologies for D-Band Applications , 2015, IEEE Transactions on Microwave Theory and Techniques.

[13]  H. Zirath,et al.  Metallic 3-D Printed Antennas for Millimeter- and Submillimeter Wave Applications , 2016, IEEE Transactions on Terahertz Science and Technology.

[14]  Thomas Zwick,et al.  Miniaturized Millimeter-Wave Radar Sensor for High-Accuracy Applications , 2017, IEEE Transactions on Microwave Theory and Techniques.

[15]  Linus Maurer,et al.  77-GHz Multi-Channel Radar Transceiver With Antenna in Package , 2014, IEEE Transactions on Antennas and Propagation.

[16]  Thomas Zwick,et al.  Active Multiple Feed On-Chip Antennas With Efficient In-Antenna Power Combining Operating at 200–320 GHz , 2017, IEEE Transactions on Antennas and Propagation.

[17]  Rui Li,et al.  Embedded Wafer Level Packaging for 77-GHz Automotive Radar Front-End With Through Silicon Via and its 3-D Integration , 2013, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[18]  Nick M. Ridler,et al.  3-D Printed Metal-Pipe Rectangular Waveguides , 2015, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[19]  Po-Hsin Liu,et al.  A 10-mW Submillimeter-Wave Solid-State Power-Amplifier Module , 2010, IEEE Transactions on Microwave Theory and Techniques.

[20]  Goutam Chattopadhyay,et al.  Submillimeter-Wave Radar: Solid-State System Design and Applications , 2014, IEEE Microwave Magazine.

[21]  N. Llombart,et al.  Silicon Micromachined Lens Antenna for THz Integrated Heterodyne Arrays , 2013, IEEE Transactions on Terahertz Science and Technology.

[22]  K.-F. Becker,et al.  Design of 77 GHz Interconnects for Buried SiGe MMICs Using Novel System-in-Package Technology , 2008, 2008 European Microwave Integrated Circuit Conference.

[23]  Bernd Heinemann,et al.  A Terahertz Detector Array in a SiGe HBT Technology , 2013, IEEE Journal of Solid-State Circuits.

[24]  A. Tessmann,et al.  A flip-chip packaged coplanar 94 GHz amplifier module with efficient suppression of parasitic substrate effects , 2004, IEEE Microwave and Wireless Components Letters.

[25]  Daniel S. Green,et al.  A Revolution on the Horizon from DARPA: Heterogeneous Integration for Revolutionary Microwave\/Millimeter-Wave Circuits at DARPA: Progress and Future Directions , 2017, IEEE Microwave Magazine.

[26]  브라이언 폴 가우처,et al.  Apparatus and methods for constructing antennas using wire bonds as radiating elements , 2005 .

[27]  Frank Ellinger,et al.  A novel planar level chip interconnection for unpackaged MMICs in the millimeter wave frequency range , 2011, 2011 Semiconductor Conference Dresden.

[28]  Ulf Johannsen,et al.  On-Chip Antenna Integration for Millimeter-Wave Single-Chip FMCW Radar, Providing High Efficiency and Isolation , 2016, IEEE Transactions on Antennas and Propagation.

[29]  A. Leuther,et al.  A 243 GHz low-noise amplifier module for use in next-generation direct detection radiometers , 2013, 2013 European Microwave Integrated Circuit Conference.

[30]  Jurgen Hasch,et al.  77 GHz radar transceiver with dual integrated antenna elements , 2010, German Microwave Conference Digest of Papers.

[31]  T. Zwick,et al.  A self-compensating 130-GHz wire bond interconnect with 13% bandwidth , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[32]  Goutam Chattopadhyay,et al.  Measurement of Silicon Micromachined Waveguide Components at 500–750 GHz , 2014, IEEE Transactions on Terahertz Science and Technology.

[33]  M. Brunnbauer,et al.  Embedded Wafer Level Ball Grid Array (eWLB) , 2008, 2008 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT).

[34]  Yasuhiro Nakasha,et al.  Flip chip assembly for sub-millimeter wave amplifier MMIC on polyimide substrate , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[35]  I. Sarkas,et al.  122 GHz radar sensor based on a monostatic SiGe-BiCMOS IC with an on-chip antenna , 2012, 2012 7th European Microwave Integrated Circuit Conference.

[36]  Andreas Ostmann,et al.  Innovative approaches for realisation of embedded chip packages - Technological challenges and achievements , 2009, 2009 59th Electronic Components and Technology Conference.

[37]  T. Zwick,et al.  Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band , 2012, IEEE Transactions on Microwave Theory and Techniques.

[38]  Thomas Zwick,et al.  Miniaturized 122 GHz ISM band FMCW radar with micrometer accuracy , 2015, 2015 European Radar Conference (EuRAD).

[39]  D. Rutledge,et al.  INTEGRATED-CIRCUIT ANTENNAS. , 1983 .

[40]  Thomas Zwick,et al.  122 GHz aperture-coupled stacked patch microstrip antenna in LTCC technology , 2016, 2016 10th European Conference on Antennas and Propagation (EuCAP).

[41]  Ho-Jin Song,et al.  Compact THz LTCC Receiver Module for 300 GHz Wireless Communications , 2016, IEEE Microwave and Wireless Components Letters.

[42]  Duixian Liu,et al.  Broadband Planar Superstrate Antenna for , 2006 .

[43]  Kamal K. Samanta,et al.  Surfing the Millimeter-Wave: Multilayer Photoimageable Technology for High Performance SoP Components in Systems at Millimeter-Wave and Beyond , 2016, IEEE Microwave Magazine.

[44]  A. Stelzer,et al.  79-GHz LTCC RF-frontend deploying 45 degree linear-polarized vertical parallel-feed antennas , 2015, 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM).

[45]  Christoph Scheytt,et al.  122 GHz patch antenna designs by using BCB above SiGe BiCMOS wafer process for system-on-chip applications , 2013, 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[46]  Thomas Zwick,et al.  122-GHz chip-to-antenna wire bond interconnect with high repeatability , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[47]  Thomas Zwick,et al.  A low-cost miniature 120GHz SiP FMCW/CW radar sensor with software linearization , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[48]  Sumanth Kumar Pavuluri,et al.  High Efficiency Wideband Aperture-Coupled Stacked Patch Antennas Assembled Using Millimeter Thick Micromachined Polymer Structures , 2010, IEEE Transactions on Antennas and Propagation.

[49]  B. Gaucher,et al.  A chip-scale packaging technology for 60-GHz wireless chipsets , 2006, IEEE Transactions on Microwave Theory and Techniques.

[50]  T. Zwick,et al.  QFN based packaging concepts for millimeter-wave transceivers , 2012, 2012 IEEE International Workshop on Antenna Technology (iWAT).

[51]  T. Zwick,et al.  MM-wave transceivers using SiGe HBT technology , 2004, Digest of Papers. 2004 Topical Meeting onSilicon Monolithic Integrated Circuits in RF Systems, 2004..

[52]  W. Winkler,et al.  A surface-mountable 116-GHz transmitter with chip-to-antenna wire bond interconnect , 2013, 2013 International Workshop on Antenna Technology (iWAT).

[53]  Linus Maurer,et al.  Radiation Performance Enhancement of E-Band Antenna in Package , 2013, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[54]  Mikael Egard,et al.  Slot-Coupled Millimeter-Wave Dielectric Resonator Antenna for High-Efficiency Monolithic Integration , 2013, IEEE Transactions on Antennas and Propagation.

[55]  R. Weigel,et al.  Embedded wafer level ball grid array (eWLB) technology for millimeter-wave applications , 2011, 2011 IEEE 13th Electronics Packaging Technology Conference.

[56]  Thomas Zwick,et al.  Packaging Solution for a Millimeter-Wave System-on-Chip Radar , 2018, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[57]  H. Essen,et al.  220 GHz Low-Noise Amplifier Modules for Radiometric Imaging Applications , 2006, 2006 European Microwave Integrated Circuits Conference.

[58]  Huey-Ru Chuang,et al.  A 60-GHz Millimeter-Wave CMOS Integrated On-Chip Antenna and Bandpass Filter , 2011, IEEE Transactions on Electron Devices.

[59]  Mehmet Kaynak,et al.  A micromachined double-dipole antenna for 122 – 140 GHz applications based on a SiGe BiCMOS technology , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[60]  N.S.苏雷斯 An electronic apparatus , 2012 .

[61]  T. Zwick,et al.  Coplanar 122-GHz Antenna Array With Air Cavity Reflector for Integration in Plastic Packages , 2012, IEEE Antennas and Wireless Propagation Letters.

[62]  A. Macor,et al.  Monolithic metal-coated plastic components for mm-wave applications , 2014, 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[63]  A. Hajimiri,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas , 2006, IEEE Journal of Solid-State Circuits.