The relationship between geographic range size and life history traits: is biogeographic history uncovered? A test using the Iberian butterflies

The geographic range of a species is influenced by past phylogenetic and biogeographic patterns. However, other historical interactions, including the interplay between life history and geography, are also likely involved. Therefore, the range size of a species can be explained on the basis of niche-breadth or dispersal related hypotheses, and previous work on European butterflies suggests that both, under the respective guise of ecological specialisation and colonising ability may apply. In the present study, data from 205 species of butterflies from the Iberian peninsula were processed through multiple regression analyses to test for correlations between geographic range size, life history traits and geographic features of the species distribution types. In addition, the percentage of variance explained by the subsets of variables analyzed in the study, with and without control for phylogenetic effects was tested. Despite a complex pattern of bivariate correlations, we found that larval polyphagy was the single best correlate of range size, followed by dispersal. Models that combined both life history traits and geographic characteristics performed better than models generated independently. The combined variables explained at least 39% of the variance. Bivariate correlations between range size and body size, migratory habits or egg size primarily reflected taxonomic patterning and reciprocal correlations with larval diet breadth and adult phenology. Therefore, aspects of niche breadth i.e. potential larval diet breadth emerged as the most influential determinants of range size. However, the relationships between these types of ecological traits and biogeographic history must still be considered when associations between life history and range size are of interest.

[1]  R. Dennis,et al.  A multivariate approach to the determination of faunal structures among European butterfly species (Lepidoptera: Rhopalocera) , 1991 .

[2]  E. García-Barros,et al.  Distribución e intensidad de los estudios faunísticos sobre mariposas diurnas en la Península Ibérica e islas Baleares (Lepidoptera, Papilionoidea y Hesperioidea) , 2005 .

[3]  S. Votier,et al.  What determines a species' geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). , 2010, The Journal of animal ecology.

[4]  T. Garland,et al.  Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts , 1992 .

[5]  R. Gregory,et al.  Macroecological patterns in British breeding birds: covariation of species’geographical range sizes at differing spatial scales , 1998 .

[6]  E. García‐Barros Body size, egg size, and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, Hesperioidea). , 2000 .

[7]  V. Polo,et al.  Explanations for bird species range size: ecological correlates and phylogenetic effects in the Canary Islands , 2008 .

[8]  Kevin J. Gaston,et al.  Are Newly Described Bird Species Small-Bodied? , 1994 .

[9]  Benjamin Gilbert,et al.  Neutrality, niches, and dispersal in a temperate forest understory. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  蒋志刚,et al.  Week 11: macroecology , 2021 .

[11]  J. Emlen,et al.  ON THE RELATIONSHIP BETWEEN ABUNDANCE AND DISTRIBUTION OF SPECIES , 2008 .

[12]  Kevin J. Gaston,et al.  The structure and dynamics of geographic ranges , 2003 .

[13]  S. Quader,et al.  Nonlinear relationships and phylogenetically independent contrasts , 2004, Journal of evolutionary biology.

[14]  Roger Vila,et al.  The evolution of alternative parasitic life histories in large blue butterflies , 2004, Nature.

[15]  R. Vilà,et al.  Rearrangement of the Agrodiaetus dolus species group (Lepidoptera, Lycaenidae) using a new cytological approach and molecular data , 2006 .

[16]  R. Vilà,et al.  Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): higher classification and biogeography , 2006 .

[17]  K. Fiedler Systematic, evolutionary, and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionoidea) , 1991 .

[18]  J. Svenning,et al.  The relative roles of environment and history as controls of tree species composition and richness in Europe , 2005 .

[19]  N. Wahlberg,et al.  Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae (Lepidoptera: Nymphalidae) , 2005 .

[20]  J. Diniz‐Filho,et al.  Macroecology, geographic range size-body size relationship and minimum viable population analysis for new world carnivora , 2005 .

[21]  Atsushi Kawaguchi Multivariate Approach , 2022, Multivariate Analysis for Neuroimaging Data.

[22]  S. Rundle,et al.  Range size in North American Enallagma damselflies correlates with wing size , 2007 .

[23]  J. S. Kotiaho,et al.  The role of niche breadth, resource availability and range position on the life history of butterflies , 2004 .

[24]  J. Diniz‐Filho,et al.  Phylogenetic comparative methods and the geographic range size – body size relationship in new world terrestrial carnivora , 2002, Evolutionary Ecology.

[25]  C. Leuschner,et al.  The relationships between abundance, range size and niche breadth in Central European tree species , 2009 .

[26]  N. Wahlberg,et al.  Phylogeny and biogeography of Coenonympha butterflies (Nymphalidae: Satyrinae) – patterns of colonization in the Holarctic , 2009 .

[27]  Elisabeth S. Vrba,et al.  Body size, biomic specialization and range size of African large mammals , 2005 .

[28]  J. Diniz‐Filho,et al.  Macroecology, global change and the shadow of forgotten ancestors , 2007 .

[29]  K. Gaston,et al.  Explanations of commonness and rarity in British breeding birds: separating resource use and resource availability , 2000 .

[30]  T. Garland,et al.  PHYLOGENETIC ANALYSES OF THE CORRELATED EVOLUTION OF CONTINUOUS CHARACTERS: A SIMULATION STUDY , 1991, Evolution; international journal of organic evolution.

[31]  N. Wahlberg,et al.  Higher level phylogeny of Satyrinae butterflies (Lepidoptera: Nymphalidae) based on DNA sequence data. , 2006, Molecular phylogenetics and evolution.

[32]  K. Gaston Species-range size distributions: products of speciation, extinction and transformation , 1998 .

[33]  Z. Fric,et al.  Host plant defences and voltinism in European butterflies , 2006 .

[34]  K. Gaston,et al.  Scaling Biodiversity: The scaling of spatial turnover: pruning the thicket , 2007 .

[35]  D. Roy,et al.  Coincidence in the distributions of butterflies and their foodplants , 1998 .

[36]  S. Nylin Gradients in butterfly biology , 2009 .

[37]  Kevin J. Gaston,et al.  Abundance–occupancy relationships , 2000 .

[38]  Daniel R. Brooks,et al.  The Nature of Diversity: An Evolutionary Voyage of Discovery , 2002 .

[39]  Fidel Fernández Rubio Guía de mariposas diurnas de la Península Ibérica: Zygenas , 1990 .

[40]  Kevin J. Gaston,et al.  A critique for macroecology , 1999 .

[41]  Fidel Fernández Rubio Guía de mariposas diurnas de la Península Ibérica, Baleares, Canarias, Azores y Madeira , 1991 .

[42]  Jorge M. Lobo,et al.  Identifying recorder-induced geographic bias in an Iberian butterfly database , 2006 .

[43]  R. Dennis,et al.  Ecological correlates of island incidence and geographical range among British butterflies , 2000, Biodiversity & Conservation.

[44]  E. García‐Barros Egg size in butterflies (Lepidoptera: Papilionoidea and Hesperiidae): A summary of data , 2000, The Journal of Research on the Lepidoptera.

[45]  S. Lavorel,et al.  Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain) , 2003 .

[46]  J. Kean,et al.  Exploring Rarity Using a General Model for Distribution and Abundance , 2004, The American Naturalist.

[47]  J. Hughes The scale of resource specialization and the distribution and abundance of lycaenid butterflies , 2000, Oecologia.

[48]  H. R. Arnold,et al.  Does diet breadth control herbivorous insect distribution size? Life history and resource outlets for specialist butterflies , 2005, Journal of Insect Conservation.

[49]  A. Grant,et al.  Life History Evolution , 2002, Heredity.

[50]  D. Roy,et al.  Host plants and butterfly biology. Do host‐plant strategies drive butterfly status? , 2004 .

[51]  M. Austin,et al.  A new model for the continuum concept , 1989, Vegetatio.

[52]  J. Lawton,et al.  Interspecific abundance-range size relationships: An appraisal of mechanisms , 1997 .

[53]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[54]  Matthew J. R. Cowley,et al.  Density–distribution relationships in British butterflies. I. The effect of mobility and spatial scale , 2001 .

[55]  Pierre Legendre,et al.  SPECIES DIVERSITY PATTERNS DERIVED FROM SPECIES–AREA MODELS , 2002 .

[56]  W. Manley,et al.  A field guide to the butterflies and burnets of Spain , 1970 .

[57]  J. Leebens-Mack,et al.  Phylogeny and life history evolution of Prodoxus yucca moths (Lepidoptera: Prodoxidae) , 2005 .

[58]  J. Hodgson Commonness and rarity in British butterflies , 1993 .

[59]  C. Thomas,et al.  Density–distribution relationships in British butterflies. II. An assessment of mechanisms , 2001 .

[60]  Roger L. H. Dennis,et al.  Faunal structures among European butterflies: evolutionary implications of bias for geography, endemism and taxonomic affiliation , 1998 .

[61]  N. Wahlberg,et al.  Speciation in Pararge (Satyrinae: Nymphalidae) butterflies – North Africa is the source of ancestral populations of all Pararge species , 2006 .

[62]  S. Stearns THE EVOLUTION OF LIFE * : . 4120 HISTORY TRAITS : A Critique of the Theory and a Review of the Data , 2008 .

[63]  N. Wahlberg,et al.  Morphology, molecules and fritillaries: approaching a stable phylogeny for Argynnini (Lepidoptera: Nymphalidae) , 2006 .

[64]  A. Gove,et al.  Dispersal traits linked to range size through range location, not dispersal ability, in Western Australian angiosperms , 2009 .

[65]  K. Gaston,et al.  Scaling Biodiversity: Scaling species richness and distribution: uniting the species–area and species–energy relationships , 2007 .

[66]  K. Gaston,et al.  Linking patterns in macroecology , 2001 .

[67]  T. Schmitt Molecular biogeography of Europe: Pleistocene cycles and postglacial trends , 2007, Frontiers in Zoology.

[68]  D. Wilkinson What is the upper size limit for cosmopolitan distribution in free‐living microorganisms? , 2001 .

[69]  Thomas E. Lacher,et al.  Latitudinal patterns of range size and species richness of New World woody plants , 2007 .