Infrared remote sensing of Mars and the Mars astrobiology exploration strategy

The Mars exploration strategy calls first for the detection from orbit of minerals indicative of environments conducive to the support of life or the preservation of biomarkers. That information would then be used for astrobiology landing site selection. The near-term search will be conducted by the 1996 Global Surveyor Thermal Emission Spectrometer (TES) and the 2001 Mars Odyssey 9-band radiometer Thermal Emission Imaging System (THEMIS). This places the productivity of TES and THEMIS in the critical path of the Mars astrobiology strategy. Most predictions of mineral detection limits for TES and THEMIS are based on laboratory spectra of fresh mineral surfaces. However, standard laboratory measurements of fresh mineral surfaces generally do not reproduce all the spectral effects of weathering and surface roughness that are very apparent in field spectra, and these differences can critically affect interpretations of TES and THEMIS data. Here we examine causes of variations in spectral contrast, and differences in spectral signatures recorded in the field and in typical laboratory measurements, and show what the results indicate for the search for minerals and landing sites using TES and THEMIS. We conclude that for TES and THEMIS to attain their predicted mineral detection limits, minerals must be present under specific conditions: well-crystalline, smooth-surfaced at several scales, and low atmospheric downwelling radiance contribution. As a result, TES and THEMIS should not necessarily be used to exclude landing sites that are of interest for other reasons (e.g. geomorphology), but that exhibit no clear detections of minerals of interest to astrobiologists.

[1]  C. Pieters,et al.  Remote geochemical analysis : elemental and mineralogical composition , 1993 .

[2]  J. Salisbury,et al.  The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals , 1992 .

[3]  L. Rowan,et al.  Evaluation of multispectral middle infrared aircraft images for lithologic mapping in the East Tintic Mountains, Utah , 1980 .

[4]  John W. Salisbury,et al.  Usefulness of weak bands in midinfrared remote sensing of particulate planetary surfaces , 1987 .

[5]  G. Hunt,et al.  Variation of single particle mid-infrared emission spectrum with particle size. , 1972, Applied optics.

[6]  Harry Y. McSween,et al.  The Thermal Emission Imaging System (THEMIS) Instrument for the Mars 2001 Orbiter , 1999 .

[7]  D. L. Anderson,et al.  Thermal emission spectrometer experiment: Mars Observer mission , 1992 .

[8]  John W. Salisbury,et al.  Infrared (2.1-25 μm) spectra of minerals , 1991 .

[9]  Charles S. Williams,et al.  Optics: a short course for engineers and scientists , 1972 .

[10]  David W. Warren,et al.  LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing , 1996, Optics & Photonics.

[11]  R. E. Walker,et al.  Color enhancement of highly correlated images. I - Decorrelation and HSI contrast stretches. [hue saturation intensity , 1986 .

[12]  Anne B. Kahle,et al.  Separation of temperature and emittance in remotely sensed radiance measurements , 1992 .

[13]  S. Hook Mapping Playa Evaporite Minerals and Associated Sediments in Death Valley, California, with , 1996 .

[14]  A. Kahle,et al.  Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows , 1991 .

[15]  A. Gillespie Spectral mixture analysis of multispectral thermal infrared images , 1992 .

[16]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[17]  Laurel Ellyn Kirkland,et al.  Terrestrial Airborne Hyperspectral Remote Sensing (SEBASS): Applications to Remote Sensing of Mars , 2001 .

[18]  R. E. Walker,et al.  Relative dating of Hawaiian lava flows using multispectral thermal infrared images: A new tool for geologic mapping of young volcanic terranes , 1988 .

[19]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[20]  H. Wänke,et al.  Experimental simulations of the photodecomposition of carbonates and sulphates on Mars , 1996, Nature.

[21]  Lawrence G. Rubin,et al.  AIP handbook of modern sensors , 1993 .

[22]  F. Palluconi,et al.  Mapping alluvial fans in Death Valley, California, using multichannel thermal infrared images , 1984 .

[23]  J. Kasting,et al.  The case for a wet, warm climate on early Mars. , 1987, Icarus.

[24]  Akira Ono,et al.  Overview of ASTER design concept , 1991, Defense, Security, and Sensing.

[25]  James E. Conel,et al.  Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of Spectral emission from condensed particulate mediums , 1969 .

[26]  S. Hook,et al.  The MODIS/ASTER airborne simulator (MASTER) - a new instrument for earth science studies , 2001 .

[27]  A. Treiman,et al.  First use of an airborne thermal infrared hyperspectral scanner for compositional mapping , 2002 .

[28]  T. R. Thomas,et al.  Surface topography in engineering : a state of the art, review and bibliography , 1977 .

[29]  R. Clark,et al.  Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .

[30]  Philip R. Christensen,et al.  Thermal infrared emission spectroscopy of anhydrous carbonates , 1997 .

[31]  A. Goetz,et al.  Mineralogic Information from a New Airborne Thermal Infrared Multispectral Scanner , 1983, Science.

[32]  G. Arnold,et al.  Near-infrared reflectance spectroscopy of bulk analog materials for planetary crust , 2001 .

[33]  D. A. Howard,et al.  A thermal emission spectral library of rock-forming minerals , 2000 .

[34]  R. Vincent,et al.  Infrared reflectance from mat surfaces. , 1968, Applied optics.

[35]  R. J. P. Lyon,et al.  Evaluation of infrared spectrophotometry for compositional analysis of lunar and planetary soils. part ii- rough and powdered surfaces , 1963 .

[36]  M. Ramsey,et al.  Estimating silicic lava vesicularity with thermal remote sensing: a new technique for volcanic mapping and monitoring , 1999 .

[37]  S. S. Nedell,et al.  Are there carbonate deposits in the Valles Marineris, Mars? , 1988, Icarus.

[38]  Mauro Bacci,et al.  Mid-Infrared Fiber-Optics Reflectance Spectroscopy: A Noninvasive Technique for Remote Analysis of Painted Layers. Part I: Technical Setup , 2001 .

[39]  D J Des Marais,et al.  Exploring for a record of ancient Martian life. , 1999, Journal of geophysical research.

[40]  Thomas S. Pagano,et al.  Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 , 1998, IEEE Trans. Geosci. Remote. Sens..