Error Estimation and Quality Control

This chapter provides a description of the error assessment tools available for general Finite Element Analysis, in particular those for solid and structural mechanics. The text focuses in goal-oriented error estimation, in terms of general quantities of interest rather that in energy norm. However, the energy norm estimates are also discussed because they are seen as basic tools that must be used for assessing the error in arbitrary functional outputs of the solution. Attention is paid to the classification of the different methodologies and their main characteristics.

[1]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[2]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[3]  Anthony T. Patera,et al.  A flux-free nodal Neumann subproblem approach to output bounds for partial differential equations , 2000 .

[4]  Antonio Huerta,et al.  The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations , 2006 .

[5]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[6]  O. C. Zienkiewicz,et al.  The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .

[7]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[8]  X. D. Li,et al.  Adaptive finite element procedures in elasticity and plasticity , 1996, Engineering with Computers.

[9]  Pierre Ladevèze,et al.  A general method for recovering equilibrating element tractions , 1996 .

[10]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[11]  Pedro Díez,et al.  A posteriori error estimation for standard finite element analysis , 1998 .

[12]  Pierre Ladevèze,et al.  A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems , 2008 .

[13]  Pedro Díez,et al.  Subdomain-based flux-free a posteriori error estimators , 2006 .

[14]  Pierre Ladevèze,et al.  ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS , 1991 .

[15]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[16]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[17]  A. Huerta,et al.  Bounds for quantities of interest and adaptivity in the element‐free Galerkin method , 2008 .

[18]  B. D. Veubeke Displacement and equilibrium models in the finite element method , 1965 .

[19]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[20]  Antonio Huerta,et al.  Computing Bounds for Linear Functionals of Exact Weak Solutions to Poisson's Equation , 2004, SIAM J. Numer. Anal..

[21]  E. Ramm,et al.  Error-controlled Adaptive Finite Elements in Solid Mechanics , 2001 .

[22]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[23]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[24]  F. F. Ling,et al.  Mastering Calculations in Linear and Nonlinear Mechanics , 2005 .

[25]  J. Peraire,et al.  Computing upper and lower bounds for the J-integral in two-dimensional linear elasticity , 2006 .

[26]  Ricardo H. Nochetto,et al.  Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..

[27]  Pedro Díez,et al.  Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates , 2003 .

[28]  Pedro Díez,et al.  Remeshing criteria and proper error representations for goal oriented h-adaptivity☆ , 2007 .