Characterization of a Set of Small Planets with TESS and CHEOPS and an Analysis of Photometric Performance

The radius valley carries implications for how the atmospheres of small planets form and evolve, but this feature is visible only with highly precise characterizations of many small planets. We present the characterization of nine planets and one planet candidate with both NASA TESS and ESA CHEOPS observations, which adds to the overall population of planets bordering the radius valley. While five of our planets—TOI 118 b, TOI 262 b, TOI 455 b, TOI 560 b, and TOI 562 b—have already been published, we vet and validate transit signals as planetary using follow-up observations for four new TESS planets, including TOI 198 b, TOI 244 b, TOI 444 b, and TOI 470 b. While a three times increase in primary mirror size should mean that one CHEOPS transit yields an equivalent model uncertainty in transit depth as about nine TESS transits in the case that the star is equally as bright in both bands, we find that our CHEOPS transits typically yield uncertainties equivalent to between two and 12 TESS transits, averaging 5.9 equivalent transits. Therefore, we find that while our fits to CHEOPS transits provide overall lower uncertainties on transit depth and better precision relative to fits to TESS transits, our uncertainties for these fits do not always match expected predictions given photon-limited noise. We find no correlations between number of equivalent transits and any physical parameters, indicating that this behavior is not strictly systematic, but rather might be due to other factors such as in-transit gaps during CHEOPS visits or nonhomogeneous detrending of CHEOPS light curves.

[1]  J. Laskar,et al.  Characterization of the HD 108236 system with CHEOPS and TESS. Confirmation of a fifth transiting planet , 2022, Astronomy & Astrophysics.

[2]  E. Pallé,et al.  Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars , 2022, Science.

[3]  J. Laskar,et al.  CHEOPS finds KELT-1b darker than expected in visible light. Discrepancy between the CHEOPS and TESS eclipse depths , 2022, Astronomy & Astrophysics.

[4]  J. Laskar,et al.  The HD 93963 A transiting system: A 1.04 d super-Earth and a 3.65 d sub-Neptune discovered by TESS and CHEOPS , 2022, Astronomy & Astrophysics.

[5]  Miguel de Val-Borro,et al.  The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.

[6]  S. Howell,et al.  Speckle Interferometric Observations With the Gemini 8-m Telescopes: Signal-to-Noise Calculations and Observational Results , 2022, Frontiers in Astronomy and Space Sciences.

[7]  Chelsea X. Huang,et al.  A Mini-Neptune from TESS and CHEOPS Around the 120 Myr Old AB Dor Member HIP 94235 , 2022, 2204.11975.

[8]  A. Claret,et al.  Rapidly rotating stars and their transiting planets: KELT-17b, KELT-19Ab, and KELT-21b in the CHEOPS and TESS era , 2022, 2204.09077.

[9]  James G. Rogers,et al.  The California-Kepler Survey. X. The Radius Gap as a Function of Stellar Mass, Metallicity, and Age , 2022, The Astronomical Journal.

[10]  Technical University of Denmark,et al.  A Second Planet Transiting LTT 1445A and a Determination of the Masses of Both Worlds , 2021, The Astronomical Journal.

[11]  OUP accepted manuscript , 2022, Monthly Notices of the Royal Astronomical Society.

[12]  J. Laskar,et al.  Analysis of Early Science observations with the CHaracterising ExOPlanets Satellite (CHEOPS) using pycheops , 2021, 2111.08828.

[13]  David J Armstrong,et al.  The young HD 73583 (TOI-560) planetary system: Two 10-M$_\oplus$ mini-Neptunes transiting a 500-Myr-old, bright, and active K dwarf , 2021, 2110.13069.

[14]  S. Quinn,et al.  The Solar Neighborhood XLVIII: Nine Giant Planets Orbiting Nearby K Dwarfs, and the CHIRON Spectrograph’s Radial Velocity Performance , 2021, The Astronomical Journal.

[15]  D. Ciardi,et al.  Twin High-Resolution, High-Speed Imagers for the Gemini Telescopes: Instrument Description and Science Verification Results , 2021, Frontiers in Astronomy and Space Sciences.

[16]  J. Laskar,et al.  The changing face of AU Mic b: stellar spots, spin-orbit commensurability, and transit timing variations as seen by CHEOPS and TESS , 2021, Astronomy & Astrophysics.

[17]  D. Ciardi,et al.  Speckle Observations of TESS Exoplanet Host Stars. II. Stellar Companions at 1–1000 au and Implications for Small Planet Detection , 2021, The Astronomical Journal.

[18]  Avi Shporer,et al.  Visible-light Phase Curves from the Second Year of the TESS Primary Mission , 2021, The Astronomical Journal.

[19]  B. Morris,et al.  A CHEOPS white dwarf transit search , 2021, Astronomy & Astrophysics.

[20]  Chelsea X. Huang,et al.  The TESS Objects of Interest Catalog from the TESS Prime Mission , 2021, The Astrophysical Journal Supplement Series.

[21]  S. Dong,et al.  Exoplanet Statistics and Theoretical Implications , 2021, Annual Review of Astronomy and Astrophysics.

[22]  D. Ciardi,et al.  Speckle Observations of TESS Exoplanet Host Stars: Understanding the Binary Exoplanet Host Star Orbital Period Distribution , 2021, The Astronomical Journal.

[23]  D. Ciardi,et al.  The NASA High-Resolution Speckle Interferometric Imaging Program: Validation and Characterization of Exoplanets and Their Stellar Hosts , 2021, Frontiers in Astronomy and Space Sciences.

[24]  K. Stassun,et al.  Parallax Systematics and Photocenter Motions of Benchmark Eclipsing Binaries in Gaia EDR3 , 2021, 2101.03425.

[25]  J. Laskar,et al.  CHEOPS observations of the HD 108236 planetary system: a fifth planet, improved ephemerides, and planetary radii , 2021, Astronomy & Astrophysics.

[26]  M. Mugrauer,et al.  Gaia search for stellar companions of TESS Objects of Interest , 2020, Astronomische Nachrichten.

[27]  Chelsea X. Huang,et al.  Two Young Planetary Systems around Field Stars with Ages between 20 and 320 Myr from TESS , 2020, The Astronomical Journal.

[28]  Chelsea X. Huang,et al.  Photometry of 10 Million Stars from the First Two Years of TESS Full Frame Images: Part II , 2020, Research Notes of the AAS.

[29]  J. Laskar,et al.  The CHEOPS mission , 2020, Experimental Astronomy.

[30]  J. L. Rasilla,et al.  ESPRESSO at VLT , 2020 .

[31]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[32]  S. Howell,et al.  Unresolved Binary Exoplanet Host Stars Fit as Single Stars: Effects on the Stellar Parameters , 2020, The Astrophysical Journal.

[33]  D. Huber,et al.  The Gaia–Kepler Stellar Properties Catalog. II. Planet Radius Demographics as a Function of Stellar Mass and Age , 2020, The Astronomical Journal.

[34]  A. Szentgyorgyi,et al.  Properties of sub-Neptune atmospheres: TOI-270 system , 2020, 2004.12475.

[35]  Avi Shporer,et al.  Vetting of 384 TESS Objects of Interest with TRICERATOPS and Statistical Validation of 12 Planet Candidates , 2020, The Astronomical Journal.

[36]  C. Dressing,et al.  triceratops: Candidate exoplanet rating tool , 2020 .

[37]  U. Cambridge,et al.  Expected performances of the Characterising Exoplanet Satellite (CHEOPS) , 2019, Astronomy & Astrophysics.

[38]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[39]  Chelsea X. Huang,et al.  Photometry of 10 Million Stars from the First Two Years of TESS Full Frame Images: Part I , 2020 .

[40]  N. Law,et al.  SOAR TESS Survey. I. Sculpting of TESS Planetary Systems by Stellar Companions , 2019, The Astronomical Journal.

[41]  Sara Seager,et al.  Three Red Suns in the Sky: A Transiting, Terrestrial Planet in a Triple M-dwarf System at 6.9 pc , 2019, The Astronomical Journal.

[42]  G. Mulders,et al.  Wōtan: Comprehensive Time-series Detrending in Python , 2019, The Astronomical Journal.

[43]  M. MacDonald Examining the radius valley: a machine-learning approach , 2019, Monthly Notices of the Royal Astronomical Society.

[44]  Keivan G. Stassun,et al.  The Revised TESS Input Catalog and Candidate Target List , 2019, The Astronomical Journal.

[45]  D. Dragomir,et al.  Planetary system around the nearby M dwarf GJ 357 including a transiting, hot, Earth-sized planet optimal for atmospheric characterization , 2019, Astronomy & Astrophysics.

[46]  Suvrath Mahadevan,et al.  Mass–Radius Relationship for M Dwarf Exoplanets: Comparing Nonparametric and Parametric Methods , 2019, The Astrophysical Journal.

[47]  R. Brahm,et al.  juliet: a versatile modelling tool for transiting and non-transiting exoplanetary systems , 2018, Monthly Notices of the Royal Astronomical Society.

[48]  P. J. Wheatley,et al.  HD 219666 b: a hot-Neptune from TESS Sector 1 , 2018, Astronomy & Astrophysics.

[49]  P. Maxted,et al.  qpower2: A fast and accurate algorithm for the computation of exoplanet transit light curves with the power-2 limb-darkening law , 2018, Astronomy & Astrophysics.

[50]  A. Bonomo,et al.  Growth model interpretation of planet size distribution , 2018, Proceedings of the National Academy of Sciences.

[51]  P. Tenenbaum,et al.  Kepler Data Validation II–Transit Model Fitting and Multiple-planet Search , 2018, Publications of the Astronomical Society of the Pacific.

[52]  C. Sotin,et al.  Two Terrestrial Planet Families with Different Origins , 2018, The Astrophysical Journal.

[53]  Adam L. Kraus,et al.  How to Constrain Your M Dwarf. II. The Mass–Luminosity–Metallicity Relation from 0.075 to 0.70 Solar Masses , 2018, The Astrophysical Journal.

[54]  C. Moutou,et al.  The HARPS search for southern extra-solar planets , 2004, Astronomy & Astrophysics.

[55]  Jessie L. Dotson,et al.  Lightkurve: Kepler and TESS time series analysis in Python , 2018 .

[56]  Angie Wolfgang,et al.  Predicting Exoplanet Masses and Radii: A Nonparametric Approach , 2018, The Astrophysical Journal.

[57]  P. Berlind,et al.  Four New Eclipsing Mid M-dwarf Systems from the New Luyten Two Tenths Catalog , 2018, The Astronomical Journal.

[58]  Mark Bowman,et al.  Real-time processing of the imaging data from the network of Las Cumbres Observatory Telescopes using BANZAI , 2018, Astronomical Telescopes + Instrumentation.

[59]  Steve B. Howell,et al.  Stellar Companions of Exoplanet Host Stars in K2 , 2018, The Astronomical Journal.

[60]  Erik A. Petigura,et al.  The California-Kepler Survey. VII. Precise Planet Radii Leveraging Gaia DR2 Reveal the Stellar Mass Dependence of the Planet Radius Gap , 2018, The Astronomical Journal.

[61]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[62]  Jie Li,et al.  Kepler Data Validation I—Architecture, Diagnostic Tests, and Data Products for Vetting Transiting Planet Candidates , 2018, 1803.04526.

[63]  E. Guinan,et al.  The Rotation–Age Relationship of M Dwarfs: A Progress Report of the Living with a Red Dwarf Program , 2018 .

[64]  A. Tokovinin Ten Years of Speckle Interferometry at SOAR , 2018, 1801.04772.

[65]  Sarah Blunt,et al.  RadVel: The Radial Velocity Modeling Toolkit , 2018, 1801.01947.

[66]  Erik Petigura,et al.  An asteroseismic view of the radius valley: stripped cores, not born rocky , 2017, Monthly Notices of the Royal Astronomical Society.

[67]  Keivan G. Stassun,et al.  The TESS Input Catalog and Candidate Target List , 2017, The Astronomical Journal.

[68]  Keivan G. Stassun,et al.  Empirical Accurate Masses and Radii of Single Stars with TESS and Gaia , 2017, 1710.01460.

[69]  Angelos Tsiaras,et al.  High-precision Stellar Limb-darkening in Exoplanetary Transits , 2017, 1704.08232.

[70]  Hilding R. Neilson,et al.  Limb Darkening and Planetary Transits: Testing Center-to-limb Intensity Variations and Limb-darkening Directly from Model Stellar Atmospheres , 2017, 1704.07376.

[71]  P. Tenenbaum,et al.  Kepler Data Processing Handbook: Transiting Planet Search , 2017 .

[72]  A. Dupree,et al.  THE KEPLER FOLLOW-UP OBSERVATION PROGRAM. I. A CATALOG OF COMPANIONS TO KEPLER STARS FROM HIGH-RESOLUTION IMAGING , 2016, 1612.02392.

[73]  K. Stassun,et al.  Accurate Empirical Radii and Masses of Planets and Their Host Stars with Gaia Parallaxes , 2016, 1609.04389.

[74]  K. Stassun,et al.  ECLIPSING BINARY STARS AS BENCHMARKS FOR TRIGONOMETRIC PARALLAXES IN THE GAIA ERA , 2016, 1609.02579.

[75]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[76]  Peter Tenenbaum,et al.  The TESS science processing operations center , 2016, Astronomical Telescopes + Instrumentation.

[77]  D. Kipping,et al.  PROBABILISTIC FORECASTING OF THE MASSES AND RADII OF OTHER WORLDS , 2016, 1603.08614.

[78]  A. Jord'an,et al.  Limb darkening and exoplanets – II. Choosing the best law for optimal retrieval of transit parameters , 2016, 1601.05485.

[79]  Keivan G. Stassun,et al.  ASTROIMAGEJ: IMAGE PROCESSING AND PHOTOMETRIC EXTRACTION FOR ULTRA-PRECISE ASTRONOMICAL LIGHT CURVES , 2016, 1601.02622.

[80]  H. Parviainen PyLDTk: Python toolkit for calculating stellar limb darkening profiles and model-specific coefficients for arbitrary filters , 2015 .

[81]  Suzanne Aigrain,et al.  ldtk: Limb Darkening Toolkit , 2015, 1508.02634.

[82]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[83]  Martin C. Stumpe,et al.  Multiscale Systematic Error Correction via Wavelet-Based Bandsplitting in Kepler Data , 2014 .

[84]  H. Müller,et al.  High-precision stellar limb-darkening measurements - A transit study of 38 Kepler planetary candidates , 2013 .

[85]  Marco Bonati,et al.  CHIRON—A Fiber Fed Spectrometer for Precise Radial Velocities , 2013, 1309.3971.

[86]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[87]  George R. Ricker,et al.  A High Earth, Lunar Resonant Orbit for Lower Cost Space Science Missions , 2013, 1306.5333.

[88]  Eric L. N. Jensen,et al.  Tapir: A web interface for transit/eclipse observability , 2013 .

[89]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[90]  D. Queloz,et al.  CHEOPS: A transit photometry mission for ESA's small mission programme , 2013, 1305.2270.

[91]  Ansgar Reiners,et al.  A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.

[92]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[93]  J. B. Laird,et al.  An abundance of small exoplanets around stars with a wide range of metallicities , 2012, Nature.

[94]  Martin C. Stumpe,et al.  Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction , 2012, 1203.1383.

[95]  Jeffery J. Kolodziejczak,et al.  Kepler Presearch Data Conditioning I—Architecture and Algorithms for Error Correction in Kepler Light Curves , 2012, 1203.1382.

[96]  D. Ciardi,et al.  SPECKLE CAMERA OBSERVATIONS FOR THE NASA KEPLER MISSION FOLLOW-UP PROGRAM , 2011 .

[97]  David Soderblom,et al.  STELLAR ACTIVITY IN THE BROADBAND ULTRAVIOLET , 2011, 1105.1377.

[98]  Jie Li,et al.  Transiting planet search in the Kepler pipeline , 2010, Astronomical Telescopes + Instrumentation.

[99]  A. Gimenez,et al.  Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.

[100]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[101]  Joshua N. Winn,et al.  The Transit Light Curve Project. IX. Evidence for a Smaller Radius of the Exoplanet XO-3b , 2008, 0804.4475.

[102]  R. Trotta Applications of Bayesian model selection to cosmological parameters , 2005, astro-ph/0504022.

[103]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[104]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[105]  Jon M. Jenkins,et al.  The Impact of Solar-like Variability on the Detectability of Transiting Terrestrial Planets , 2002 .

[106]  F. Bouchy,et al.  Fundamental photon noise limit to radial velocity measurements , 2001 .

[107]  Bernhard R. Brandl,et al.  PHARO: A Near‐Infrared Camera for the Palomar Adaptive Optics System , 2001 .

[108]  D. Scott Acton,et al.  Performance of the W.M. Keck Observatory Natural Guide Star Adaptive Optic Facility: the first year at the telescope , 2000, Astronomical Telescopes and Instrumentation.

[109]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.