The neurobiological basis of narcolepsy

Narcolepsy is the most common neurological cause of chronic sleepiness. The discovery about 20 years ago that narcolepsy is caused by selective loss of the neurons producing orexins (also known as hypocretins) sparked great advances in the field. Here, we review the current understanding of how orexin neurons regulate sleep–wake behaviour and the consequences of the loss of orexin neurons. We also summarize the developing evidence that narcolepsy is an autoimmune disorder that may be caused by a T cell-mediated attack on the orexin neurons and explain how these new perspectives can inform better therapeutic approaches.Narcolepsy is a sleep disorder caused by selective loss of orexin-producing neurons. Scammell and colleagues describe the functions of orexin neurons and the effects of their loss and review evidence implicating the immune system in the pathogenesis of the disorder.

[1]  T. Sakurai,et al.  Comprehensive Behavioral Analysis of Male Ox1r−/− Mice Showed Implication of Orexin Receptor-1 in Mood, Anxiety, and Social Behavior , 2015, Front. Behav. Neurosci..

[2]  E. Mignot,et al.  The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. , 2002, Archives of neurology.

[3]  Denis Burdakov,et al.  Glutamate and GABA as rapid effectors of hypothalamic “peptidergic” neurons , 2012, Front. Behav. Neurosci..

[4]  A Stricker-Krongrad,et al.  Independent feeding and metabolic actions of orexins in mice. , 1998, Biochemical and biophysical research communications.

[5]  T. Scammell,et al.  Dysregulation of Sleep Behavioral States in Narcolepsy , 2017, Sleep.

[6]  T. Sakurai,et al.  Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions , 2005, Neuroscience Letters.

[7]  I. Koralnik,et al.  Lack of Major Histocompatibility Complex Class I Upregulation and Restrictive Infection by JC Virus Hamper Detection of Neurons by T Lymphocytes in the Central Nervous System , 2015, Journal of neuropathology and experimental neurology.

[8]  Susumu Tanaka,et al.  Anti-Tribbles Pseudokinase 2 (TRIB2)-Immunization Modulates Hypocretin/Orexin Neuronal Functions , 2017, Sleep.

[9]  Sebastiaan Overeem,et al.  Clinical, polysomnographic and genome‐wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study , 2013, Journal of sleep research.

[10]  C. Lines,et al.  Orexin receptor antagonism for treatment of insomnia , 2012, Neurology.

[11]  H. Pijl,et al.  Glucose and fat metabolism in narcolepsy and the effect of sodium oxybate: a hyperinsulinemic-euglycemic clamp study. , 2014, Sleep.

[12]  Cecilia G Diniz Behn,et al.  Abnormal sleep/wake dynamics in orexin knockout mice. , 2010, Sleep.

[13]  P. Franken,et al.  Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need , 2017, Proceedings of the National Academy of Sciences.

[14]  E. A. Lucas,et al.  Sleep cycle organization in narcoleptic and normal dogs , 1979, Physiology & Behavior.

[15]  E. Mignot,et al.  Body mass index-independent metabolic alterations in narcolepsy with cataplexy. , 2009, Sleep.

[16]  B. Becher,et al.  T cells in patients with narcolepsy target self-antigens of hypocretin neurons , 2018, Nature.

[17]  Seockhoon Chung,et al.  Prevalence of narcolepsy‐cataplexy in Korean adolescents , 2008, Acta neurologica Scandinavica.

[18]  T. Scammell,et al.  Do enteric neurons make hypocretin? , 2008, Regulatory Peptides.

[19]  T. Pollmächer,et al.  Low cerebrospinal fluid hypocretin (orexin) and altered energy homeostasis in human narcolepsy , 2001 .

[20]  F. Han,et al.  Body weight and basal metabolic rate in childhood narcolepsy: a longitudinal study. , 2016, Sleep medicine.

[21]  S. Kaur,et al.  Hypocretin-2 Saporin Lesions of the Ventrolateral Periaquaductal Gray (vlPAG) Increase REM Sleep in Hypocretin Knockout Mice , 2009, PloS one.

[22]  P. Luppi,et al.  Brainstem mechanisms of paradoxical (REM) sleep generation , 2011, Pflügers Archiv - European Journal of Physiology.

[23]  Y. Dauvilliers,et al.  Narcolepsy and Other Central Hypersomnias , 2017, Continuum.

[24]  A. Yamanaka,et al.  Input of Orexin/Hypocretin Neurons Revealed by a Genetically Encoded Tracer in Mice , 2005, Neuron.

[25]  S. Bastianini,et al.  High‐amplitude theta wave bursts during REM sleep and cataplexy in hypocretin‐deficient narcoleptic mice , 2012, Journal of sleep research.

[26]  Takeshi Sakurai,et al.  Hypocretin/Orexin Excites Hypocretin Neurons via a Local Glutamate Neuron—A Potential Mechanism for Orchestrating the Hypothalamic Arousal System , 2002, Neuron.

[27]  T. Wetter,et al.  Hypothalamo–pituitary–adrenal axis, glucose metabolism and TNF‐α in narcolepsy , 2014, Journal of sleep research.

[28]  Depression and Hypersomnia: A Complex Association. , 2017, Sleep medicine clinics.

[29]  Sung Tae Kim,et al.  Gray Matter Concentration Abnormality in Brains of Narcolepsy Patients , 2009, Korean journal of radiology.

[30]  E. Mignot,et al.  High prevalence of precocious puberty and obesity in childhood narcolepsy with cataplexy. , 2013, Sleep.

[31]  N. Risch,et al.  HLA-DQB1*0602 homozygosity increases relative risk for narcolepsy but not disease severity in two ethnic groups. US Modafinil in Narcolepsy Multicenter Study Group. , 1998, Tissue antigens.

[32]  I. Jaussent,et al.  Smoking, Alcohol, Drug Use, Abuse and Dependence in Narcolepsy and Idiopathic Hypersomnia: A Case-Control Study. , 2016, Sleep.

[33]  Y. Inoue,et al.  Relationship between clinical characteristics of narcolepsy and CSF orexin‐A levels , 2011, Journal of sleep research.

[34]  A. Adamantidis,et al.  Coreleased Orexin and Glutamate Evoke Nonredundant Spike Outputs and Computations in Histamine Neurons , 2014, Cell reports.

[35]  J. Siegel,et al.  Narp immunostaining of human hypocretin (orexin) neurons , 2005, Neurology.

[36]  Jee Hoon Roh,et al.  Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation. , 2013, Genes & development.

[37]  T. Pollmächer,et al.  Low cerebrospinal fluid hypocretin (orexin) and altered energy homeostasis in human narcolepsy , 2001, Annals of neurology.

[38]  A. N. van den Pol Hypothalamic Hypocretin (Orexin): Robust Innervation of the Spinal Cord , 1999, The Journal of Neuroscience.

[39]  G. Aston-Jones,et al.  Orexin/hypocretin is necessary for context-driven cocaine-seeking , 2010, Neuropharmacology.

[40]  Sebastiaan Overeem,et al.  Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy , 2010, Nature Genetics.

[41]  R. Huerta,et al.  Mechanism for Hypocretin-mediated sleep-to-wake transitions , 2012, Proceedings of the National Academy of Sciences.

[42]  Jun Lu,et al.  Critical Role of Dorsomedial Hypothalamic Nucleus in a Wide Range of Behavioral Circadian Rhythms , 2003, The Journal of Neuroscience.

[43]  G. Plazzi,et al.  Growing Up with Type 1 Narcolepsy: Its Anthropometric and Endocrine Features. , 2016, Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine.

[44]  W. Dement,et al.  Evidence for excessive sleepiness in canine narcoleptics. , 1986, Electroencephalography and clinical neurophysiology.

[45]  E. Arrigoni,et al.  Dynorphin inhibits basal forebrain cholinergic neurons by pre‐ and postsynaptic mechanisms , 2016, The Journal of physiology.

[46]  E. Mignot,et al.  Genome Wide Analysis of Narcolepsy in China Implicates Novel Immune Loci and Reveals Changes in Association Prior to Versus After the 2009 H1N1 Influenza Pandemic , 2013, PLoS genetics.

[47]  G. Aston-Jones,et al.  A Septal-Hypothalamic Pathway Drives Orexin Neurons, Which Is Necessary for Conditioned Cocaine Preference , 2012, The Journal of Neuroscience.

[48]  Jon T. Willie,et al.  Orexin (Hypocretin) Neurons Contain Dynorphin , 2001, The Journal of Neuroscience.

[49]  Olivier Clément,et al.  Localization of the Brainstem GABAergic Neurons Controlling Paradoxical (REM) Sleep , 2009, PloS one.

[50]  R Broughton,et al.  Excessive daytime sleepiness and the pathophysiology of narcolepsy-cataplexy: a laboratory perspective. , 1986, Sleep.

[51]  J. Antel,et al.  Major histocompatibility complex molecules on glial cells , 1992, Seminars in Neuroscience.

[52]  Y. Dauvilliers,et al.  CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice , 2016, Proceedings of the National Academy of Sciences.

[53]  C. Nelson,et al.  Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene Expression Analysis , 2017, eNeuro.

[54]  E. Mignot,et al.  The autoimmune basis of narcolepsy , 2013, Current Opinion in Neurobiology.

[55]  K. Vogt,et al.  Nonpeptide orexin type-2 receptor agonist ameliorates narcolepsy-cataplexy symptoms in mouse models , 2017, Proceedings of the National Academy of Sciences.

[56]  J. Renger,et al.  Structure and ligand-binding mechanism of the human OX1 and OX2 orexin receptors , 2016, Nature Structural &Molecular Biology.

[57]  T. Scammell,et al.  Running promotes wakefulness and increases cataplexy in orexin knockout mice. , 2007, Sleep.

[58]  C. Saper,et al.  Hypothalamic regulation of sleep and circadian rhythms , 2005, Nature.

[59]  Jon T. Willie,et al.  Involvement of the Lateral Hypothalamic Peptide Orexin in Morphine Dependence and Withdrawal , 2003, The Journal of Neuroscience.

[60]  Z. Kutalik,et al.  DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. , 2014, Sleep.

[61]  M. Edwards,et al.  Complex movement disorders at disease onset in childhood narcolepsy with cataplexy , 2011, Brain : a journal of neurology.

[62]  Y. Hishikawa,et al.  The Pathophysiologic Basis of Secondary Narcolepsy and Hypersomnia , 2011, Current neurology and neuroscience reports.

[63]  P. Kenny,et al.  Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area , 2014, Proceedings of the National Academy of Sciences.

[64]  J. Siegel,et al.  Localized loss of hypocretin (orexin) cells in narcolepsy without cataplexy. , 2009, Sleep.

[65]  A. Yamanaka,et al.  Orexin Directly Excites Orexin Neurons through Orexin 2 Receptor , 2010, The Journal of Neuroscience.

[66]  M. Silber,et al.  Comorbidities in a community sample of narcolepsy. , 2017, Sleep medicine.

[67]  L. Ferrari,et al.  Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons , 2018, The Journal of Neuroscience.

[68]  Sebastiaan Overeem,et al.  A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains , 2000, Nature Medicine.

[69]  C. Burgess,et al.  Amygdala Lesions Reduce Cataplexy in Orexin Knock-Out Mice , 2013, The Journal of Neuroscience.

[70]  David E. Moorman,et al.  Role of lateral hypothalamic orexin neurons in reward processing and addiction , 2009, Neuropharmacology.

[71]  T. Sakurai,et al.  Histamine‐1 receptor is not required as a downstream effector of orexin‐2 receptor in maintenance of basal sleep/wake states , 2010, Acta physiologica.

[72]  Takeshi Sakurai,et al.  Behavioral State Instability in Orexin Knock-Out Mice , 2004, The Journal of Neuroscience.

[73]  B. Roth,et al.  Pharmacogenetic Modulation of Orexin Neurons Alters Sleep/Wakefulness States in Mice , 2011, Neuroscience Research.

[74]  J. Chapman,et al.  Passive transfer of narcolepsy: anti-TRIB2 autoantibody positive patient IgG causes hypothalamic orexin neuron loss and sleep attacks in mice. , 2013, Journal of autoimmunity.

[75]  S. Nevsimalova,et al.  Reduced hypothalamic gray matter in narcolepsy with cataplexy. , 2006, Neuro endocrinology letters.

[76]  Poul Jennum,et al.  Absence of autoreactive CD4+ T-cells targeting HLA-DQA1*01:02/DQB1*06:02 restricted hypocretin/orexin epitopes in narcolepsy type 1 when detected by EliSpot , 2017, Journal of Neuroimmunology.

[77]  C. Saper,et al.  Fos Expression in Orexin Neurons Varies with Behavioral State , 2001, The Journal of Neuroscience.

[78]  C. Saper,et al.  A putative flip–flop switch for control of REM sleep , 2006, Nature.

[79]  Abnormal , 2020, Definitions.

[80]  W. Dement,et al.  Circadian rhythms in narcolepsy: studies on a 90 minute day. , 1994, Electroencephalography and clinical neurophysiology.

[81]  Alessandro Silvani,et al.  Effects of Ambient Temperature on Sleep and Cardiovascular Regulation in Mice: The Role of Hypocretin/Orexin Neurons , 2012, PloS one.

[82]  E. Mignot,et al.  Absence of anti-hypocretin receptor 2 autoantibodies in post pandemrix narcolepsy cases , 2017, PloS one.

[83]  C. Saper,et al.  Concomitant loss of dynorphin, NARP, and orexin in narcolepsy , 2005, Neurology.

[84]  C. Berridge,et al.  Fos immunoreactivity in hypocretin-synthesizing and hypocretin-1 receptor-expressing neurons: effects of diurnal and nocturnal spontaneous waking, stress and hypocretin-1 administration , 2003, Neuroscience.

[85]  JaneR . Taylor,et al.  Orexin mediates morphine place preference, but not morphine-induced hyperactivity or sensitization , 2010, Brain Research.

[86]  O. Hassani,et al.  Discharge of Identified Orexin/Hypocretin Neurons across the Sleep-Waking Cycle , 2005, The Journal of Neuroscience.

[87]  S. Gammeltoft,et al.  Rapid eye movement sleep behaviour disorder in patients with narcolepsy is associated with hypocretin-1 deficiency. , 2010, Brain : a journal of neurology.

[88]  G. Lammers,et al.  Immunohistochemical screening for antibodies in recent onset type 1 narcolepsy and after H1N1 vaccination , 2015, Journal of Neuroimmunology.

[89]  Zhe Zhang,et al.  A Hypothalamic Switch for REM and Non-REM Sleep , 2018, Neuron.

[90]  T. So,et al.  The significance of OX40 and OX40L to T‐cell biology and immune disease , 2009, Immunological reviews.

[91]  Arne Svejgaard,et al.  Crystal structure of HLA-DQ0602 that protects against type 1 diabetes and confers strong susceptibility to narcolepsy , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[92]  T. Young,et al.  Nocturnal rapid eye movement sleep latency for identifying patients with narcolepsy/hypocretin deficiency. , 2013, JAMA neurology.

[93]  M. Mühlethaler,et al.  Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients. , 2010, The Journal of clinical investigation.

[94]  M. Yanagisawa,et al.  Reduced Brown Adipose Tissue Thermogenesis during Environmental Interactions in Transgenic Rats with Ataxin-3-mediated Ablation of Hypothalamic Orexin Neurons Genotyping and Immunohistochemical Verification of Phenotype Immunohistochemical Analysis of Orexin-containing Neurons and Their Axonal Proce , 2022 .

[95]  Jerome M. Siegel,et al.  Behavioral Correlates of Activity in Identified Hypocretin/Orexin Neurons , 2005, Neuron.

[96]  Sleep onset rapid‐eye‐movement episodes in narcolepsy: REM sleep pressure or nonREM‐REM sleep dysregulation? , 1992, Journal of sleep research.

[97]  C. Cunningham,et al.  Involvement of the orexin/hypocretin system in ethanol conditioned place preference , 2011, Psychopharmacology.

[98]  Liang-Jen Wang,et al.  Comorbidity of narcolepsy and depressive disorders: a nationwide population-based study in Taiwan. , 2017, Sleep medicine.

[99]  F E Bloom,et al.  The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[100]  R. Maldonado,et al.  Hypocretin/Orexin Signaling in the Hypothalamic Paraventricular Nucleus is Essential for the Expression of Nicotine Withdrawal , 2012, Biological Psychiatry.

[101]  A. Lutterotti,et al.  CD4+ T-Cell Reactivity to Orexin/Hypocretin in Patients With Narcolepsy Type 1 , 2016, Sleep.

[102]  Michael Aldrich,et al.  Reduced Number of Hypocretin Neurons in Human Narcolepsy , 2000, Neuron.

[103]  C. Gieger,et al.  Narcolepsy is strongly associated with the TCR alpha locus , 2009, Nature Genetics.

[104]  J. Ciriello,et al.  Cardiac effects of hypocretin-1 in nucleus ambiguus. , 2003, American journal of physiology. Regulatory, integrative and comparative physiology.

[105]  K. Deisseroth,et al.  Neural substrates of awakening probed with optogenetic control of hypocretin neurons , 2007, Nature.

[106]  T. Hökfelt,et al.  Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns , 2014, Proceedings of the National Academy of Sciences.

[107]  T. Scammell,et al.  Orexin neurons are necessary for the circadian control of REM sleep. , 2009, Sleep.

[108]  Antoine Adamantidis,et al.  Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks , 2016, Nature Communications.

[109]  J. Peever,et al.  GABA Cells in the Central Nucleus of the Amygdala Promote Cataplexy , 2017, The Journal of Neuroscience.

[110]  Edilio Borroni,et al.  Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice , 2011, Proceedings of the National Academy of Sciences.

[111]  S. Miller,et al.  The role of antigen presenting cells in multiple sclerosis. , 2011, Biochimica et biophysica acta.

[112]  Shahar Alon,et al.  Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a , 2015, eLife.

[113]  S. Shioda,et al.  Direct Involvement of Orexinergic Systems in the Activation of the Mesolimbic Dopamine Pathway and Related Behaviors Induced by Morphine , 2006, The Journal of Neuroscience.

[114]  J. Siegel,et al.  Greatly increased numbers of histamine cells in human narcolepsy with cataplexy , 2013, Annals of neurology.

[115]  E. Mignot,et al.  Sleep/wake fragmentation disrupts metabolism in a mouse model of narcolepsy , 2007, The Journal of physiology.

[116]  E. Mignot,et al.  Autoimmunity to hypocretin and molecular mimicry to flu in type 1 narcolepsy , 2018, Proceedings of the National Academy of Sciences.

[117]  W. Dement,et al.  Sleep fragmentation in canine narcolepsy. , 1986, Sleep.

[118]  R. Szymusiak,et al.  Efferent projections from the median preoptic nucleus to sleep- and arousal-regulatory nuclei in the rat brain , 2007, Neuroscience.

[119]  Dennis McGinty,et al.  The Median Preoptic Nucleus Reciprocally Modulates Activity of Arousal-Related and Sleep-Related Neurons in the Perifornical Lateral Hypothalamus , 2007, The Journal of Neuroscience.

[120]  Á. Pascual-Leone,et al.  Reward-seeking behavior in human narcolepsy. , 2011, Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine.

[121]  Differential Roles of Orexin Receptor-1 and -2 in the Regulation of Non-REM and REM Sleep , 2011, The Journal of Neuroscience.

[122]  B. Lowell,et al.  GABAergic Neurons of the Central Amygdala Promote Cataplexy , 2017, The Journal of Neuroscience.

[123]  P. Worley,et al.  Selective expression of Narp, a secreted neuronal pentraxin, in orexin neurons , 2002, Journal of neurochemistry.

[124]  C. Lines,et al.  Insight Into Reduction of Wakefulness by Suvorexant in Patients With Insomnia: Analysis of Wake Bouts , 2018, Sleep.

[125]  T. Pollmächer,et al.  Increased body-mass index in patients with narcolepsy , 2000, The Lancet.

[126]  C. M. Linton Narcolepsy without Cataplexy , 2013 .

[127]  E. Mignot,et al.  Autoimmunity to hypocretin and molecular mimicry to flu antigens in Type 1 narcolepsy , 2018, bioRxiv.

[128]  T. Koepsell,et al.  Prevalence of narcolepsy in King County, Washington, USA. , 2009, Sleep medicine.

[129]  N Risch,et al.  Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. , 2001, American journal of human genetics.

[130]  E. Mignot,et al.  Primary progressive narcolepsy type 1: The other side of the coin , 2014, Neurology.

[131]  E. Matsushima,et al.  Comparison of clinical characteristics among narcolepsy with and without cataplexy and idiopathic hypersomnia without long sleep time, focusing on HLA-DRB1( *)1501/DQB1( *)0602 finding. , 2009, Sleep medicine.

[132]  T. Sakurai,et al.  Orexin neurons suppress narcolepsy via 2 distinct efferent pathways. , 2014, The Journal of clinical investigation.

[133]  M. Partinen,et al.  Incidence of narcolepsy after H1N1 influenza and vaccinations: Systematic review and meta-analysis. , 2017, Sleep medicine reviews.

[134]  A. Régnault,et al.  Narcolepsy Type 1 Is Associated with a Systemic Increase and Activation of Regulatory T Cells and with a Systemic Activation of Global T Cells , 2017, PloS one.

[135]  A. Yamanaka,et al.  Progressive Loss of the Orexin Neurons Reveals Dual Effects on Wakefulness. , 2016, Sleep.

[136]  E. Mignot,et al.  Predictors of hypocretin (orexin) deficiency in narcolepsy without cataplexy. , 2012, Sleep.

[137]  T. Scammell,et al.  Afferents to the orexin neurons of the rat brain , 2006, The Journal of comparative neurology.

[138]  P. Luppi,et al.  The inappropriate occurrence of rapid eye movement sleep in narcolepsy is not due to a defect in homeostatic regulation of rapid eye movement sleep , 2018, Sleep.

[139]  J. Ciriello,et al.  Cardioacceleratory responses to hypocretin-1 injections into rostral ventromedial medulla , 2003, Brain Research.

[140]  E. Mignot,et al.  Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in china , 2011, Annals of neurology.

[141]  M. Partinen,et al.  Antigenic Differences between AS03 Adjuvanted Influenza A (H1N1) Pandemic Vaccines: Implications for Pandemrix-Associated Narcolepsy Risk , 2014, PloS one.

[142]  J. Paton,et al.  Antagonism of orexin receptors significantly lowers blood pressure in spontaneously hypertensive rats , 2013, The Journal of physiology.

[143]  P. Jennum,et al.  Sleep-wake stability in narcolepsy patients with normal, low and unmeasurable hypocretin levels. , 2017, Sleep medicine.

[144]  N. Guex,et al.  A missense mutation in myelin oligodendrocyte glycoprotein as a cause of familial narcolepsy with cataplexy. , 2011, American journal of human genetics.

[145]  M. Littner,et al.  Practice parameters for clinical use of the multiple sleep latency test and the maintenance of wakefulness test. , 2005, Sleep.

[146]  Mayumi Takasaki,et al.  Sympathetic and cardiovascular actions of orexins in conscious rats. , 1999, American journal of physiology. Regulatory, integrative and comparative physiology.

[147]  Z. Kutalik,et al.  Narcolepsy-Associated HLA Class I Alleles Implicate Cell-Mediated Cytotoxicity. , 2016, Sleep.

[148]  R. Rappuoli,et al.  Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2 , 2015, Science Translational Medicine.

[149]  Susumu Tanaka,et al.  Detection of autoantibodies against hypocretin, hcrtrl, and hcrtr2 in narcolepsy: anti-Hcrt system antibody in narcolepsy. , 2006, Sleep.

[150]  R. DiLeone,et al.  Orexin Mediates the Expression of Precipitated Morphine Withdrawal and Concurrent Activation of the Nucleus Accumbens Shell , 2008, Biological Psychiatry.

[151]  E. Mignot,et al.  Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. , 2009, Sleep.

[152]  M. Mitler,et al.  Sleep studies on canine narcolepsy: pattern and cycle comparisons between affected and normal dogs. , 1977, Electroencephalography and clinical neurophysiology.

[153]  A. Kelley,et al.  Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action , 2001, Neuroscience.

[154]  Sebastiaan Overeem,et al.  Hypocretin (orexin) deficiency in human narcolepsy , 2000, The Lancet.

[155]  E. Mignot,et al.  Clinical aspects of narcolepsy-cataplexy across ethnic groups. , 2002, Sleep.

[156]  H. Inoko,et al.  HLA-DR2 and Dw2 in narcolepsy and in other disorders of excessive somnolence without cataplexy. , 1986, Sleep.

[157]  C. Heidbreder,et al.  Orexin-1 receptor antagonist SB-334867 reduces the acquisition and expression of cocaine-conditioned reinforcement and the expression of amphetamine-conditioned reward , 2011, Behavioural pharmacology.

[158]  Damien Gervasoni,et al.  Paradoxical (REM) sleep genesis: The switch from an aminergic–cholinergic to a GABAergic–glutamatergic hypothesis , 2006, Journal of Physiology-Paris.

[159]  N. Dahmen,et al.  Basal metabolic rate in narcoleptic patients. , 2009, Sleep.

[160]  Jon T. Willie,et al.  Narcolepsy in orexin Knockout Mice Molecular Genetics of Sleep Regulation , 1999, Cell.

[161]  D. Auer,et al.  Reduced cortical gray matter in narcolepsy: Preliminary findings with voxel-based morphometry , 2002, Neurology.

[162]  P. Carrive,et al.  Both Ox1r and Ox2r orexin receptors contribute to the cardiovascular and locomotor components of the novelty stress response in the rat , 2015, Neuropharmacology.

[163]  M. Tafti,et al.  Comment on “Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2” , 2015, Science Translational Medicine.

[164]  V. Pankratz,et al.  The epidemiology of narcolepsy in Olmsted County, Minnesota: a population-based study. , 2002, Sleep.

[165]  C. Gieger,et al.  ImmunoChip Study Implicates Antigen Presentation to T Cells in Narcolepsy , 2013, PLoS genetics.

[166]  Emmanuel Mignot,et al.  The Sleep Disorder Canine Narcolepsy Is Caused by a Mutation in the Hypocretin (Orexin) Receptor 2 Gene , 1999, Cell.

[167]  H. Pijl,et al.  Increased heart rate variability but normal resting metabolic rate in hypocretin/orexin-deficient human narcolepsy. , 2008, Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine.

[168]  C. Guilleminault,et al.  HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients. , 1997, Sleep.

[169]  K. Deisseroth,et al.  Tuning arousal with optogenetic modulation of locus coeruleus neurons , 2010, Nature Neuroscience.

[170]  P. Bonaventure,et al.  Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference, and reinstatement , 2011, Psychopharmacology.

[171]  C. Leonard,et al.  Cholinergic Modulation of Narcoleptic Attacks in Double Orexin Receptor Knockout Mice , 2011, PloS one.

[172]  S. Hong Neuroimaging of Narcolepsy and Kleine-Levin Syndrome. , 2017, Sleep medicine clinics.

[173]  C. Malanga,et al.  Orexin-1 receptor antagonism does not reduce the rewarding potency of cocaine in Swiss–Webster mice , 2012, Brain Research.

[174]  A. Desautels,et al.  HLA-DPB1 and HLA class I confer risk of and protection from narcolepsy. , 2015, American journal of human genetics.

[175]  I. Arnulf,et al.  Eating disorder and metabolism in narcoleptic patients. , 2007, Sleep.

[176]  S. Carr,et al.  Orexins and Orexin Receptors: A Family of Hypothalamic Neuropeptides and G Protein-Coupled Receptors that Regulate Feeding Behavior , 1998, Cell.

[177]  G. Aston-Jones,et al.  Arousal and reward: a dichotomy in orexin function , 2006, Trends in Neurosciences.

[178]  I. Jaussent,et al.  Temporal Changes in the Cerebrospinal Fluid Level of Hypocretin-1 and Histamine in Narcolepsy , 2017, Sleep.

[179]  M. Partinen,et al.  Increased Incidence and Clinical Picture of Childhood Narcolepsy following the 2009 H1N1 Pandemic Vaccination Campaign in Finland , 2012, PloS one.

[180]  Yuqing Shen,et al.  Developmental expression and localization of MHC class I molecules in the human central nervous system , 2015, Experimental Brain Research.

[181]  Kenji F. Tanaka,et al.  Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice , 2013, Behavioural Brain Research.

[182]  Daniela Schlatzer,et al.  Proteomic profiling of the hypothalamus in two mouse models of narcolepsy , 2017, Proteomics.

[183]  E. Mignot,et al.  Hypocretin Levels in Sporadic and Familial Cases of Canine Narcolepsy , 2001, Neurobiology of Disease.

[184]  Y. Dauvilliers,et al.  Increased Immune Complexes of Hypocretin Autoantibodies in Narcolepsy , 2010, PloS one.

[185]  O. Masseck,et al.  Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity , 2017, Proceedings of the National Academy of Sciences.

[186]  T. Sakurai,et al.  Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[187]  A. Pol Hypothalamic Hypocretin (Orexin): Robust Innervation of the Spinal Cord , 1999 .

[188]  J. Buckner Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases , 2010, Nature Reviews Immunology.

[189]  E. Mignot,et al.  Increase of histaminergic tuberomammillary neurons in narcolepsy , 2013, Annals of neurology.

[190]  Jon T. Willie,et al.  Genetic Ablation of Orexin Neurons in Mice Results in Narcolepsy, Hypophagia, and Obesity , 2001, Neuron.

[191]  Y. Dauvilliers,et al.  Decision-making, reward-seeking behaviors and dopamine agonist therapy in restless legs syndrome. , 2013, Sleep.

[192]  S. Borgland,et al.  Projection-Target-Defined Effects of Orexin and Dynorphin on VTA Dopamine Neurons. , 2017, Cell reports.

[193]  C. Howe,et al.  Retrograde interferon‐gamma signaling induces major histocompatibility class I expression in human‐induced pluripotent stem cell‐derived neurons , 2017, Annals of clinical and translational neurology.

[194]  D. Linden,et al.  Narp regulates homeostatic scaling of excitatory synapses on Parvalbumin interneurons , 2010, Nature Neuroscience.

[195]  C. Saper,et al.  Role of the Medial Prefrontal Cortex in Cataplexy , 2013, The Journal of Neuroscience.

[196]  E. Katz,et al.  Usefulness of a Nocturnal SOREMP for Diagnosing Narcolepsy with Cataplexy in a Pediatric Population. , 2015, Sleep.

[197]  R. Cools,et al.  Aberrant Food Choices after Satiation in Human Orexin-Deficient Narcolepsy Type 1. , 2016, Sleep.

[198]  M. Edwards,et al.  Clinical and polysomnographic course of childhood narcolepsy with cataplexy , 2013, Brain : a journal of neurology.

[199]  H. Pijl,et al.  Spontaneous food choice in narcolepsy. , 1996, Sleep.

[200]  D. Burdakov,et al.  Orexin-driven GAD65 network of the lateral hypothalamus sets physical activity in mice , 2017, Proceedings of the National Academy of Sciences.

[201]  A. N. van den Pol,et al.  Neurons Containing Hypocretin (Orexin) Project to Multiple Neuronal Systems , 1998, The Journal of Neuroscience.

[202]  P. Franco,et al.  Depressive feelings in children with narcolepsy. , 2014, Sleep medicine.

[203]  Ming-Fung Wu,et al.  Cataplexy-Active Neurons in the Hypothalamus Implications for the Role of Histamine in Sleep and Waking Behavior , 2004, Neuron.

[204]  Jon T. Willie,et al.  Distinct Narcolepsy Syndromes in Orexin Receptor-2 and Orexin Null Mice Molecular Genetic Dissection of Non-REM and REM Sleep Regulatory Processes , 2003, Neuron.

[205]  R. Maki,et al.  Identification and functional analysis of mutations in the hypocretin (orexin) genes of narcoleptic canines. , 2001, Genome research.

[206]  R. Maldonado,et al.  Hypocretins Regulate the Anxiogenic-Like Effects of Nicotine and Induce Reinstatement of Nicotine-Seeking Behavior , 2010, The Journal of Neuroscience.

[207]  A. Yamanaka,et al.  Conditional Ablation of Orexin/Hypocretin Neurons: A New Mouse Model for the Study of Narcolepsy and Orexin System Function , 2014, The Journal of Neuroscience.

[208]  K. Hirata,et al.  New susceptibility variants to narcolepsy identified in HLA class II region. , 2015, Human molecular genetics.