Stability and Error Estimates for Vector Field Interpolation and Decomposition on the Sphere with RBFs

A new numerical technique based on radial basis functions (RBFs) is presented for fitting a vector field tangent to the sphere, $\mathbb{S}^2$, from samples of the field at “scattered” locations on $\mathbb{S}^2$. The method naturally provides a way to decompose the reconstructed field into its individual Helmholtz-Hodge components, i.e., into divergence-free and curl-free parts, which is useful in many applications from the atmospheric and oceanic sciences (e.g., in diagnosing the horizontal wind and ocean currents). Several approximation results for the method will be derived. In particular, Sobolev-type error estimates are obtained for both the interpolant and its decomposition. Optimal stability estimates for the associated interpolation matrices are also presented. Finally, numerical validation of the theoretical results is given for vector fields with characteristics similar to those of atmospheric wind fields.

[1]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[2]  Joseph D. Ward,et al.  Divergence-Free RBFs on Surfaces , 2007 .

[3]  Willi Freeden,et al.  Spherical spline interpolation—basic theory and computational aspects , 1984 .

[4]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[5]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[6]  D. Williamson The Evolution of Dynamical Cores for Global Atmospheric Models(125th Anniversary Issue of the Meteorological Society of Japan) , 2007 .

[7]  I. Watterson Decomposition of Global Ocean Currents Using a Simple Iterative Method , 2001 .

[8]  F. J. Narcowich,et al.  Sobolev Error Estimates and a Bernstein Inequality for Scattered Data Interpolation via Radial Basis Functions , 2006 .

[9]  W. Freeden,et al.  Vector spherical spline interpolation—basic theory and computational aspects , 1993 .

[10]  J. Holton An introduction to dynamic meteorology , 2004 .

[11]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[12]  Edward J. Fuselier,et al.  Sobolev-type approximation rates for divergence-free and curl-free RBF interpolants , 2008, Math. Comput..

[13]  J. Bismut Index Theorem and the Heat Equation , 2010 .

[14]  Bengt Fornberg,et al.  The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..

[15]  Philip Crotwell Constructive Approximation on the Sphere , 2000 .

[16]  Stefan Beth,et al.  Multiscale Approximation by Vector Radial Basis Functions on the Sphere , 2000 .

[17]  Joseph D. Ward,et al.  Error and stability estimates for surface-divergence free RBF interpolants on the sphere , 2009, Math. Comput..

[18]  Lahouari Bounoua,et al.  An Introduction to Numerical Weather Prediction Techniques , 1996 .

[19]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[20]  Edward J. Fuselier,et al.  Improved stability estimates and a characterization of the native space for matrix-valued RBFs , 2008, Adv. Comput. Math..

[21]  Holger Wendland,et al.  Direct and Inverse Sobolev Error Estimates for Scattered Data Interpolation via Spherical Basis Functions , 2007, Found. Comput. Math..

[22]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[23]  Holger Wendland,et al.  Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting , 2004, Math. Comput..

[24]  Kurt Jetter,et al.  Error estimates for scattered data interpolation on spheres , 1999, Math. Comput..

[25]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[26]  Grace Wahba,et al.  Vector Splines on the Sphere, with Application to the Estimation of Vorticity and Divergence from Discrete, Noisy Data , 1982 .

[27]  Xingping Sun,et al.  Approximation power of RBFs and their associated SBFs: a connection , 2007, Adv. Comput. Math..

[28]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[29]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[30]  Gregory E. Fasshauer,et al.  On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.

[31]  Peter Lynch,et al.  Deducing the Wind from Vorticity and Divergence , 1988 .

[32]  Armin Iske,et al.  Multiresolution Methods in Scattered Data Modelling , 2004, Lecture Notes in Computational Science and Engineering.

[33]  Natasha Flyer,et al.  A radial basis function method for the shallow water equations on a sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  R. Daley Atmospheric Data Analysis , 1991 .

[35]  M. J. Fengler,et al.  A Nonlinear Galerkin Scheme Involving Vector and Tensor Spherical Harmonics for Solving the Incompressible Navier-Stokes Equation on the Sphere , 2005, SIAM J. Sci. Comput..

[36]  T. Gneiting Correlation functions for atmospheric data analysis , 1999 .

[37]  C. Mader Numerical modeling of water waves , 1979 .

[38]  M. Cullen,et al.  Numerical Prediction and Dynamic Meteorology, 2nd Edn. By G. J. HALTINER and R. T. WILLIAMS. Wiley, 1980. 477 pp. £26.90. , 1984, Journal of Fluid Mechanics.

[39]  Willi Freeden,et al.  Spherical Functions of Mathematical Geosciences: A Scalar, Vectorial, and Tensorial Setup , 2008, Geosystems Mathematics.

[40]  Joseph D. Ward,et al.  Scattered-Data Interpolation on Rn: Error Estimates for Radial Basis and Band-Limited Functions , 2004, SIAM J. Math. Anal..

[41]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .