Generalized Lehmer-Tausworthe random number generators

We study a general class of random number generators which includes Lehmer's congruential generator and the Tausworthe shift-register generator as special cases. The generators in this class use a general linear recurrence relation defined by a primitive polynomial over a large finite field. This generator, like the Tausworthe generator, has the property of the k-space equi-distribution. We give some theoretical and heuristic justification for its asymptotic uniformity as well as asymptotic independence from a statistical theory viewpoint. In this paper, we also propose an efficient method of finding primitive polynomials in a large finite field. Several generators with extremely long cycles are presented.

[1]  R. Tausworthe Random Numbers Generated by Linear Recurrence Modulo Two , 1965 .

[2]  Lih-Yuan Deng,et al.  Generation of Uniform Variates from Several Nearly Uniformly Distributed Variables , 1990 .

[3]  Paul Bratley,et al.  A guide to simulation (2nd ed.) , 1986 .

[4]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: Preface , 1994 .

[5]  Holger Grothe,et al.  Matrix generators for pseudo-random vector generation , 1987 .

[6]  Linus Schrage,et al.  A guide to simulation , 1983 .

[7]  Lih-Yuan Deng,et al.  On improving pseudo-random number generators , 1991, 1991 Winter Simulation Conference Proceedings..

[8]  Solomon W. Golomb,et al.  Shift Register Sequences , 1981 .

[9]  N. Zierler Linear Recurring Sequences , 1959 .

[10]  Neal Zierler,et al.  On Primitive Trinomials (Mod 2) , 1968, Inf. Control..

[11]  Pierre L'Ecuyer,et al.  Random numbers for simulation , 1990, CACM.

[12]  Pierre L'Ecuyer,et al.  Efficient and portable combined random number generators , 1988, CACM.

[13]  I. D. Hill,et al.  An Efficient and Portable Pseudo‐Random Number Generator , 1982 .

[14]  Wayne Stahnke Primitive binary polynomials , 1973 .

[15]  Lih-Yuan Deng,et al.  Combining random number generators , 1991, 1991 Winter Simulation Conference Proceedings..

[16]  Lih-Yuan Deng Elements of Maximum Order in a Matrix Group , 1990, SIAM Rev..

[17]  G. Marsaglia Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[18]  P. L'Ecuyer A tutorial on uniform variate generation , 1989, WSC '89.

[19]  Harald Niederreiter The Performance of k-Step Pseudorandom Number Generators under the Uniformity Test , 1984 .

[20]  F. Blouin,et al.  Linear congruential generators of order K>1 , 1988, 1988 Winter Simulation Conference Proceedings.

[21]  W. H. Payne,et al.  Coding the Lehmer pseudo-random number generator , 1969, CACM.

[22]  Paul Bratley,et al.  A guide to simulation , 1983 .

[23]  Stuart L. Anderson,et al.  Random Number Generators on Vector Supercomputers and Other Advanced Architectures , 1990, SIAM Rev..

[24]  Joel N. Franklin Equidistribution of Matrix-Power Residues Modulo One , 1964 .

[25]  Pierre L'Ecuyer,et al.  Linear congruential generators of order K>1 , 1988, WSC '88.