Dual-responsive and Multi-functional Plasmonic Hydrogel Valves and Biomimetic Architectures Formed with Hydrogel and Gold Nanocolloids

[1]  Chao Yuan,et al.  3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials , 2016, Scientific Reports.

[2]  E. Kumacheva,et al.  Universal behavior of hydrogels confined to narrow capillaries , 2015, Scientific Reports.

[3]  Dowan Kim,et al.  Photothermally driven fast responding photo-actuators fabricated with comb-type hydrogels and magnetite nanoparticles , 2015, Scientific Reports.

[4]  Toru Torii,et al.  Fabrication of Microfluidic Valves Using a Hydrogel Molding Method , 2015, Scientific reports.

[5]  P. Kofinas,et al.  Enzyme Induced Stiffening of Nanoparticle-Hydrogel Composites with Structural Color. , 2015, ACS nano.

[6]  Leonid Ionov,et al.  Hydrogel-based actuators: possibilities and limitations , 2014 .

[7]  Chunyan Wang,et al.  Bioinspired Materials: from Low to High Dimensional Structure , 2014, Advanced materials.

[8]  A. Yetisen,et al.  Holographic sensors: three-dimensional analyte-sensitive nanostructures and their applications. , 2014, Chemical reviews.

[9]  Paul V Braun,et al.  Linear and Fast Hydrogel Glucose Sensor Materials Enabled by Volume Resetting Agents , 2014, Advanced materials.

[10]  Bruce P. Lee,et al.  Novel Hydrogel Actuator Inspired by Reversible Mussel Adhesive Protein Chemistry , 2014, Advanced materials.

[11]  E. Cho,et al.  Gold Nanospheres Assembled on Hydrogel Colloids Display a Wide Range of Thermoreversible Changes in Optical Bandwidth for Various Plasmonic-Based Color Switches , 2014 .

[12]  W. Richtering,et al.  Gel architectures and their complexity. , 2014, Soft matter.

[13]  B. Saunders,et al.  Doubly crosslinked poly(vinyl amine) microgels: hydrogels of covalently inter-linked cationic microgel particles. , 2014, Journal of materials chemistry. B.

[14]  Zhigang Suo,et al.  Force and stroke of a hydrogel actuator , 2013 .

[15]  Julianne L. Holloway,et al.  Double network hydrogels prepared from pH-responsive doubly crosslinked microgels , 2013 .

[16]  J. Greener,et al.  Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses , 2013, Nature Communications.

[17]  Thomas Hirsch,et al.  Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix. , 2013, ACS applied materials & interfaces.

[18]  F. Topuz,et al.  Hydrogels in sensing applications , 2012 .

[19]  B. Saunders,et al.  Doubly crosslinked microgel-polyelectrolyte complexes: three simple methods to tune and improve gel mechanical properties , 2012 .

[20]  Wonmok Lee,et al.  Dually tunable inverse opal hydrogel colorimetric sensor with fast and reversible color changes , 2012 .

[21]  B. Saunders,et al.  A study of hydrogel composites containing pH-responsive doubly crosslinked microgels , 2012 .

[22]  Zhongze Gu,et al.  Bio-inspired variable structural color materials. , 2012, Chemical Society reviews.

[23]  B. Saunders,et al.  Tuning the swelling and mechanical properties of pH-responsive doubly crosslinked microgels using particle composition , 2011 .

[24]  Neus G Bastús,et al.  Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[25]  James P. Keener,et al.  Kinetics of Swelling Gels , 2011, SIAM J. Appl. Math..

[26]  B. Saunders,et al.  Doubly crosslinked pH-responsive microgels prepared by particle inter-penetration: swelling and mechanical properties , 2011 .

[27]  Yadong Yin,et al.  Responsive photonic crystals. , 2011, Angewandte Chemie.

[28]  L. Chu,et al.  Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks. , 2010, Journal of colloid and interface science.

[29]  D. Weitz,et al.  Regulating volume transitions of highly responsive hydrogel scaffolds by adjusting the network properties of microgel building block colloids. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[30]  Le He,et al.  Rewritable Photonic Paper with Hygroscopic Salt Solution as Ink , 2009 .

[31]  Richard E. Eitel,et al.  Magnetic hydrogel nanocomposites as remote controlled microfluidic valves. , 2009, Lab on a chip.

[32]  Tong Cai,et al.  Oligo(ethylene glycol)-based thermoresponsive core-shell microgels. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[33]  M. Márquez,et al.  The formation of crystalline hydrogel films by self-crosslinking microgels , 2009 .

[34]  M. Márquez,et al.  Photonic Hydrogels with Poly(ethylene glycol) Derivative Colloidal Spheres as Building Blocks , 2008 .

[35]  Sanford A. Asher,et al.  Poly(vinyl alcohol) Rehydratable Photonic Crystal Sensor Materials , 2008, Advanced functional materials.

[36]  Lei Jiang,et al.  Colorful humidity sensitive photonic crystal hydrogel , 2008 .

[37]  S. Asher,et al.  Polymerized PolyHEMA photonic crystals: pH and ethanol sensor materials. , 2008, Journal of the American Chemical Society.

[38]  Alberto Fernandez-Nieves,et al.  Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles. , 2008, Nano letters.

[39]  Ali Khademhosseini,et al.  Microengineered hydrogels for tissue engineering. , 2007, Biomaterials.

[40]  Andreas Richter,et al.  Controlled Double‐Sensitivity of Microgels Applied to Electronically Adjustable Chemostats , 2007 .

[41]  Zhibing Hu,et al.  Phase behavior and stabilization of microgel arrays , 2007 .

[42]  P. Cremer,et al.  Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. , 2005, Journal of the American Chemical Society.

[43]  Sanford A. Asher,et al.  Photoswitchable Spirobenzopyran‐ Based Photochemically Controlled Photonic Crystals , 2005 .

[44]  Anjal C. Sharma,et al.  A general photonic crystal sensing motif: creatinine in bodily fluids. , 2004, Journal of the American Chemical Society.

[45]  D. Beebe,et al.  Flow control with hydrogels. , 2004, Advanced drug delivery reviews.

[46]  Teruo Okano,et al.  Hydrogels: Swelling, Drug Loading, and Release , 1992, Pharmaceutical Research.

[47]  Igor K Lednev,et al.  Photonic crystal carbohydrate sensors: low ionic strength sugar sensing. , 2003, Journal of the American Chemical Society.

[48]  Jianzhong Wu,et al.  Phase behavior of thermally responsive microgel colloids. , 2003, Physical review letters.

[49]  Jun Gao,et al.  Optical Properties of N-Isopropylacrylamide Microgel Spheres in Water , 2002 .

[50]  Sanford A. Asher,et al.  Photonic Crystal Chemical Sensors: pH and Ionic Strength , 2000 .

[51]  Robin H. Liu,et al.  Functional hydrogel structures for autonomous flow control inside microfluidic channels , 2000, Nature.

[52]  J. Holtz,et al.  Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials , 1998 .

[53]  Sanford A. Asher,et al.  Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials , 1996, Science.

[54]  Lei Liu,et al.  Self-Assembly Motif for Creating Submicron Periodic Materials. Polymerized Crystalline Colloidal Arrays , 1994 .

[55]  Toyoichi Tanaka,et al.  Kinetics of discontinuous volume-phase transition of gels , 1988 .