Combinatorial optimization with 2-joins

A 2-join is an edge cutset that naturally appears in decomposition of several classes of graphs closed under taking induced subgraphs, such as perfect graphs and claw-free graphs. In this paper we construct combinatorial polynomial time algorithms for finding a maximum weighted clique, a maximum weighted stable set and an optimal coloring for a class of perfect graphs decomposable by 2-joins: the class of perfect graphs that do not have a balanced skew partition, a 2-join in the complement, nor a homogeneous pair. The techniques we develop are general enough to be easily applied to finding a maximum weighted stable set for another class of graphs known to be decomposable by 2-joins, namely the class of even-hole-free graphs that do not have a star cutset. We also give a simple class of graphs decomposable by 2-joins into bipartite graphs and line graphs, and for which finding a maximum stable set is NP-hard. This shows that having holes all of the same parity gives essential properties for the use of 2-joins in computing stable sets.

[1]  Nicolas Trotignon,et al.  Odd Pairs of Cliques , 2013, 1309.0449.

[2]  Gérard Cornuéjols,et al.  Square-free perfect graphs , 2004, J. Comb. Theory, Ser. B.

[3]  S. Poljak A note on stable sets and colorings of graphs , 1974 .

[4]  Vasek Chvátal,et al.  Star-cutsets and perfect graphs , 1985, J. Comb. Theory, Ser. B.

[5]  Jan Kratochvíl,et al.  Coloring precolored perfect graphs , 1997, J. Graph Theory.

[6]  Nicolas Trotignon,et al.  A class of perfectly contractile graphs , 2006, J. Comb. Theory, Ser. B.

[7]  L. Lovász Graph minor theory , 2005 .

[8]  Kristina Vuskovic,et al.  Triangulated neighborhoods in even-hole-free graphs , 2007, Discret. Math..

[9]  Nick Roussopoulos,et al.  A MAX{m, n} Algorithm for Determining the Graph H from Its Line Graph C , 1973, Inf. Process. Lett..

[10]  Klaus Truemper,et al.  Max-Flow Min-Cut Matroids: Polynomial Testing and Polynomial Algorithms for Maximum Flow and Shortest Routes , 1987, Math. Oper. Res..

[11]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[12]  Gérard Cornuéjols,et al.  Even‐hole‐free graphs part II: Recognition algorithm , 2002, J. Graph Theory.

[13]  Paul D. Seymour,et al.  Even pairs in Berge graphs , 2009, J. Comb. Theory, Ser. B.

[14]  Gérard Cornuéjols,et al.  Even-hole-free graphs part I: Decomposition theorem , 2002 .

[15]  Philippe G. H. Lehot An Optimal Algorithm to Detect a Line Graph and Output Its Root Graph , 1974, JACM.

[16]  László Lovász,et al.  Normal hypergraphs and the perfect graph conjecture , 1972, Discret. Math..

[17]  Kristina Vuskovic,et al.  Even-hole-free graphs that do not contain diamonds: A structure theorem and its consequences , 2009, J. Comb. Theory, Ser. B.

[18]  Gérard Cornuéjols,et al.  Balanced 0-1 Matrices I. Decomposition , 2001, J. Comb. Theory, Ser. B.

[19]  Jan Kratochvíl,et al.  Coloring precolored perfect graphs , 1997 .

[20]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[21]  Paul D. Seymour,et al.  Recognizing Berge Graphs , 2005, Comb..

[22]  M. Chudnovsky Berge trigraphs , 2006 .

[23]  Vasek Chvátal,et al.  Bull-free Berge graphs are perfect , 1987, Graphs Comb..

[24]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[25]  P. Seymour How the proof of the strong perfect graph conjecture was found , 2006 .

[26]  Kristina Vuskovic,et al.  Decomposition of even-hole-free graphs with star cutsets and 2-joins , 2013, J. Comb. Theory, Ser. B.

[27]  Nicolas Trotignon,et al.  Detecting 2-joins faster , 2012, J. Discrete Algorithms.

[28]  Maria Chudnovsky,et al.  Berge trigraphs and their applications , 2003 .

[29]  Gérard Cornuéjols,et al.  Compositions for perfect graphs , 1985, Discret. Math..

[30]  Celina M. H. de Figueiredo,et al.  Optimizing Bull-Free Perfect Graphs , 2005, SIAM J. Discret. Math..

[31]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[32]  P. Seymour,et al.  The Strong Perfect Graph Theorem , 2002, math/0212070.

[33]  G. Dirac On rigid circuit graphs , 1961 .

[34]  Gérard Cornuéjols,et al.  Decomposition of odd-hole-free graphs by double star cutsets and 2-joins , 2004, Discret. Appl. Math..

[35]  Paul D. Seymour,et al.  Decomposition of regular matroids , 1980, J. Comb. Theory, Ser. B.

[36]  M. Conforti,et al.  Balanced 0 ; 1 Matrices Part II : Recognition Algorithm , 2000 .

[37]  J. P. Uhry,et al.  Transformations which Preserve Perfectness and H-Perfectness of Graphs , 1982 .

[38]  Ryan B. Hayward,et al.  Weakly triangulated graphs , 1985, J. Comb. Theory B.

[39]  Nicolas Trotignon,et al.  A structure theorem for graphs with no cycle with a unique chord and its consequences , 2010 .

[40]  Martin Farber,et al.  On diameters and radii of bridged graphs , 1989, Discret. Math..

[41]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[42]  B. Mohar,et al.  Graph Minors , 2009 .

[43]  Gérard Cornuéjols,et al.  Decomposition of Balanced Matrices , 1999, J. Comb. Theory, Ser. B.

[44]  Paul D. Seymour,et al.  Three-colourable perfect graphs without even pairs , 2012, J. Comb. Theory, Ser. B.

[45]  Nicolas Trotignon,et al.  Decomposing Berge graphs and detecting balanced skew partitions , 2013, J. Comb. Theory, Ser. B.

[46]  R. Ansorge Abhandlungen aus dem mathematischen seminar der Universität Hamburg , 1977 .

[47]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.