Estimating the hydraulic properties of an aquitard from in situ pore pressure measurements

A workflow is described to estimate specific storage (Ss) and hydraulic conductivity (K) from a profile of vibrating wire piezometers embedded into a regional aquitard in Australia. The loading efficiency, compressibility and Ss were estimated from pore pressure response to atmospheric pressure changes, and K was estimated from the earliest part of the measurement record following grouting. Results indicate that Ss and K were, respectively, 8.8 × 10−6 to 1.2 × 10−5 m−1 and 2 × 10−12 m s−1 for a claystone/siltstone, and 4.3 × 10−6 to 9.6 × 10−6 m−1 and 1 × 10−12 to 5 × 10−12 m s−1 for a thick mudstone. K estimates from the pore pressure response are within one order of magnitude when compared to direct measurement in a laboratory and inverse modelled flux rates determined from natural tracer profiles. Further analysis of the evolution and longevity of the properties of borehole grout (e.g. thermal and chemical effects) may help refine the estimation of formation hydraulic properties using this workflow. However, the convergence of K values illustrates the benefit of multiple lines of evidence to support aquitard characterization. An additional benefit of in situ pore pressure measurement is the generation of long-term data to constrain groundwater flow models, which provides a link between laboratory scale data and the formation scale.RésuméUn processus de travail est décrit pour estimer l’emmagasinement spécifique (Ss) et la conductivité hydraulique (K) à partir d’un profil de piézomètres à corde vibrante implantés dans un aquitard régional en Australie. L’efficacité de la charge, la compressibilité et Ss ont été estimés à partir de la réponse de la pression interstitielle à des modifications de pression atmosphérique, et K a été estimée à partir de la première partie de l’enregistrement des mesures suivant l’injection. Les résultats indiquent que Ss et K, ont été respectivement de 8.8 × 10−6 à 1.2 × 10−5 m−1 et 2 × 10−12 m s−1 pour une argilite/siltite, et de 4.3 × 10−6 à 9.6 × 10−6 m−1 et 1 × 10−12 à 5 × 10−12 m s−1 pour un mudstone épais. Les estimations de K à partir de la réponse de la pression interstitielle sont d’un ordre de grandeur des mesures directes en laboratoire et des vitesses de flux déterminés par modèle inverse à partir des profils de traceurs naturels. Une analyse plus approfondie de l’évolution et de la longévité des propriétés des coulis de forage (par ex. effets thermiques et chimiques) peut aider à affiner l’estimation des propriétés hydrauliques de la formation en utilisant ce processus de travail. Cependant, la convergence des valeurs de K illustre le bénéfice de l’utilisation de plusieurs sources de données pour caractériser un aquitard. Un avantage supplémentaire des mesures de la pression in situ de la pression interstitielle est la production de données à long terme pour contraindre des modèles hydrodynamiques des eaux souterraines, ce qui permet d’établir un lien entre les données de laboratoire et celles à l’échelle de la formation.ResumenSe describe un diagrama de flujo para estimar el almacenamiento específico (Ss) y la conductividad hidráulica (K) a partir de un perfil de piezómetros de cuerda vibrante incrustado en un acuitardo regional en Australia. Se estimaron la eficiencia de carga, compresibilidad y Ss a partir de la respuesta de la presión poral a cambios de presión atmosférica, y K fue estimado a partir de la parte más temprana del registro de mediciones posteriores a la cementación. Los resultados indican que Ss y K fueron, respectivamente, 8.8 × 10−6 a 1.2 × 10−5 m−1 y 2 × 10−12 m s−1 para una arcilita/limolita, y 4.3 × 10−6 a 9.6 × 10−6 m−1 y 1 × 10−12 a 5 × 10−12 m s−1 para una fangolita espesa. Las estimaciones de K a partir de la respuesta de la presión poral están dentro de un orden de magnitud cuando se las compara a mediciones directas en el laboratorio y a tasas de flujo de modelado inverso determinado a partir de perfiles de trazadores naturales. Un análisis más detallado de la evolución y longevidad de las propiedades del pozo cementado (por ejemplo efectos químicos y termales) puede ayudar a ajustar la estimación de las propiedades hidráulicas de la formación usando este diagrama de flujo. Sin embargo, la convergencia de los valores de K ilustra el beneficio de múltiples líneas de evidencias para apoyar a la caracterización del acuitardo. Un beneficio adicional de la medición de la presión poral in situ es la generación de datos a largo plazo para restringir los modelos de flujo de agua subterránea, lo cual proporciona una vínculo entre los datos a escala de laboratorio y la escala de formación.摘要本文论述了估算澳大利亚区域隔水层中振弦测压计剖面单位储水量(Ss)和水力传导率(K)的工作流程。通过孔隙压力对大气压力变化的反应估算了加载效率、压缩率及单位储水量,同时也根据灌浆后最早的测量记录估算了水力传导率。结果显示,单位储水量和水力传导率在粘土岩、粉砂岩中分别为8.8 × 10−6 到 1.2 × 10−5 m−1 和 2 × 10−12 m s−1,在泥岩中分别为4.3 × 10−6 到 9.6 × 10−6 m−1 和 1 × 10−12 to 5 × 10−12 m s−1 。与实验室直接测量结果和天然示踪剂剖面确定的反向模拟通量比较后发现,根据孔隙压力反应得到的水力传导率估算值处在一个数量级内。利用这个工作流程,有关钻孔泥浆特性(即热效应和化学效应)演化和寿命的进一步分析可有助于提高地层水力特性的估算精度。然而,水力传导率值的收敛阐明了证据多重线在支持隔水层特性描述中的优点。现场孔隙压力测量的另外一个优点就是不断积累长期资料,用来约束地下水模型,这些资料的产生搭建了实验室尺度资料和地层尺度资料之间的桥梁。ResumoÉ descrito um fluxograma de trabalho para estimar o armazenamento específico (Ss) e a condutividade hidráulica (K) a partir de um perfil de piezômetros de corda vibrante embutidos num aquitardo regional, na Austrália. A eficiência de carga, a compressibilidade e o Ss foram estimados a partir da resposta da pressão dos poros às mudanças da pressão atmosférica, e o K foi estimado a partir da parte inicial do registro de medição na sequência da cimentação. Os resultados indicam que Ss e K foram, respetivamente, 8.8 × 10−6 a 1.2 × 10−5 m−1 e 2 × 10−12 m s−1 para um argilito/siltito, e 4.3 × 10−6 a 9.6 × 10−6 m−1 e 1 × 10−12 a 5 × 10−12 m s−1 para uma espessa formação de lamito. As estimativas de K obtidas a partir das respostas da pressão nos poros são de uma ordem de magnitude quando comparadas com medições diretas em laboratório e com taxas de fluxo baseadas em perfis de traçadores naturais e obtidas por modelação inversa. Análises posteriores da evolução e longevidade das propriedades do cimento do furo (por exemplo efeitos térmicos e químicos) podem ajudar a refinar a estimação das propriedades hidráulicas da formação, usando este fluxograma de trabalho. No entanto, a convergência dos valores de K ilustra o benefício de linhas de evidência múltiplas para apoiar a caraterização do aquitardo. Um benefício adicional das medições da pressão de poros in situ é a geração de dados de longo prazo para constranger os modelos de fluxo de água subterrânea, o que providencia uma ligação entre os dados à escala de laboratório e à escala da formação.

[1]  L. Simeoni Laboratory tests for measuring the time-lag of fully grouted piezometers , 2012 .

[2]  I. Contreras,et al.  The Use of the Fully-Grouted Method for Piezometer Installation , 2007 .

[3]  Dirk Schulze-Makuch,et al.  Scale Dependency of Hydraulic Conductivity in Heterogeneous Media , 1999 .

[4]  L. Wassenaar,et al.  Inferring Heterogeneity in Aquitards Using High‐Resolution δD and δ18O Profiles , 2009, Ground water.

[5]  S. Barbour,et al.  Interpreting pore-water pressure changes induced by water table fluctuations and mechanical loading due to soil moisture changes , 2012 .

[6]  J. E. Smith,et al.  The dynamics of shale compaction and evolution of pore-fluid pressures , 1971 .

[7]  K. Bradbury,et al.  The Vertical Hydraulic Conductivity of an Aquitard at Two Spatial Scales , 2006, Ground water.

[8]  N. Hoteit,et al.  Under stress permeability determination of the Meuse/Haute-Marne mudstone , 2005 .

[9]  L. Wassenaar,et al.  Millennial-scale diffusive migration of solutes in thick clay-rich aquitards: evidence from multiple environmental tracers , 2011 .

[10]  G. Kamp,et al.  A new technique for obtaining high‐resolution pore pressure records in thick claystone aquitards and its use to determine in situ compressibility , 2013 .

[11]  S. P. Neuman,et al.  Field determination of the hydraulic properties of leaky multiple aquifer systems , 1972 .

[12]  G. Marsily,et al.  Time to reach near‐steady state in large aquifers , 2013 .

[13]  J. Gale,et al.  Theory of earth tide and barometric effects in porous formations with compressible grains , 1983 .

[14]  M. S. Hantush Modification of the theory of leaky aquifers , 1960 .

[15]  Craig Simmons,et al.  Using Hydraulic Head Measurements in Variable‐Density Ground Water Flow Analyses , 2007, Ground water.

[16]  C. Bethke,et al.  Groundwater flow and the 4He distribution in the Great Artesian Basin of Australia , 1999 .

[17]  K. Bradbury,et al.  Is One an Upper Limit for Natural Hydraulic Gradients? , 2008, Ground water.

[18]  P. Vaughan A Note on Sealing Piezometers in Boreholes , 1969 .

[19]  James J Butler,et al.  Pumping‐Induced Drawdown and Stream Depletion in a Leaky Aquifer System , 2007, Ground water.

[20]  Laurent Wouters,et al.  Natural tracer profiles across argillaceous formations , 2011 .

[21]  C. E. Neuzil,et al.  A method to estimate groundwater depletion from confining layers , 2007 .

[22]  J. Marivoet,et al.  A critical review of laboratory and in-situ hydraulic conductivity measurements for the Boom Clay in Belgium , 2013 .

[23]  G. van der Kamp,et al.  Monitoring of total soil moisture on a scale of hectares using groundwater piezometers , 1997 .

[24]  G. Kamp Methods for determining the in situ hydraulic conductivity of shallow aquitards – an overview , 2001 .

[25]  D. Dewhurst,et al.  Influence of clay fraction on pore‐scale properties and hydraulic conductivity of experimentally compacted mudstones , 1999 .

[26]  K. Bradbury,et al.  Hydraulic transience and the role of bedding fractures in a bedrock aquitard, southeastern Wisconsin, USA , 2003 .

[27]  John D. Bredehoeft,et al.  Regional flow in the Dakota aquifer; a study of the role of confining layers , 1983 .

[28]  C. Neuzil Groundwater Flow in Low‐Permeability Environments , 1986 .

[29]  M. Hendry,et al.  Palaeohydrogeological insights from natural tracer profiles in aquitard porewater, Great Artesian Basin, Australia , 2013 .

[30]  C. Keller,et al.  A multiscale study of the permeability of a thick clayey till , 1989 .

[31]  Gordon T. McKenna,et al.  Grouted-in installation of piezometers in boreholes , 1995 .

[32]  C. Neuzil How permeable are clays and shales , 1994 .

[33]  P. Erik Mikkelsen,et al.  Cement-Bentonite Grout Backfill for Borehole Instruments , 2002 .

[34]  A. Aplin,et al.  Influence of lithology and compaction on the pore size distribution and modelled permeability of some mudstones from the Norwegian margin , 1998 .

[35]  P. S. Moore,et al.  CRETACEOUS OF THE EROMANGA BASIN — IMPLICATIONS FOR HYDROCARBON EXPLORATION , 1984 .

[36]  B. Dugan,et al.  Permeability-porosity relationships of shallow mudstones in the Ursa Basin, northern deepwater Gulf of Mexico , 2012 .

[37]  T. A. Black,et al.  Monitoring the moisture balance of a boreal aspen forest using a deep groundwater piezometer. , 2000 .

[38]  G. Mariéthoz,et al.  Determination of vertical hydraulic conductivity of aquitards in a multilayered leaky system using water-level signals in adjacent aquifers , 2013 .

[39]  C. Neuzil Low Fluid Pressure Within the Pierre Shale' A Transient Response to Erosion , 1993 .

[40]  A. Skempton THE PORE-PRESSURE COEFFICIENTS A AND B , 1954 .

[41]  W. Timms,et al.  Propagation of pressure change through thick clay sequences: an example from Liverpool Plains, NSW, Australia , 2005 .

[42]  F. E. Wickman The “total” amount of sediments and the composition of the “average igneous rock” , 1954 .

[43]  G. Harrington,et al.  Using excess 4He to quantify variability in aquitard leakage , 2012 .

[44]  K. Belitz,et al.  Lateral Fluid Flow in a Compacting Sand-Shale Sequence: South Caspian Basin , 1988 .

[45]  G. Kamp,et al.  Annual fluctuations of groundwater levels as a result of loading by surface moisture , 1991 .

[46]  Paul Vauterin,et al.  Tsoft: graphical and interactive software for the analysis of time series and Earth tides , 2005, Comput. Geosci..

[47]  L. Wassenaar,et al.  Controls on the long‐term downward transport of δ²H of water in a regionally extensive, two‐layered aquitard system , 2011 .

[48]  Andrew C. Aplin,et al.  Compaction‐driven evolution of porosity and permeability in natural mudstones: An experimental study , 1998 .

[49]  Andrew C. Aplin,et al.  Permeability and petrophysical properties of 30 natural mudstones , 2007 .