MiR-21 Promotes Glioma Invasion by Targeting MMP Regulators.

Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.2Departments of Neurology and Radiology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, Massachusetts, USA.3Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

[1]  H. Allgayer,et al.  MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer , 2008, Oncogene.

[2]  Shuomin Zhu,et al.  MicroRNA-21 targets tumor suppressor genes in invasion and metastasis , 2008, Cell Research.

[3]  David E Levy,et al.  Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. , 2008, Genes & development.

[4]  A. Krogh,et al.  Programmed Cell Death 4 (PDCD4) Is an Important Functional Target of the MicroRNA miR-21 in Breast Cancer Cells* , 2008, Journal of Biological Chemistry.

[5]  T. van Dyke,et al.  Differential Apaf-1 levels allow cytochrome c to induce apoptosis in brain tumors but not in normal neural tissues , 2007, Proceedings of the National Academy of Sciences.

[6]  Gregory J. Hannon,et al.  microRNAs join the p53 network — another piece in the tumour-suppression puzzle , 2007, Nature Reviews Cancer.

[7]  R. Weinberg,et al.  Tumour invasion and metastasis initiated by microRNA-10b in breast cancer , 2007, Nature.

[8]  Ralph Weissleder,et al.  MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. , 2007, Cancer research.

[9]  David M. Thomas,et al.  RECK—a newly discovered inhibitor of metastasis with prognostic significance in multiple forms of cancer , 2007, Cancer and Metastasis Reviews.

[10]  Jörg Hackermüller,et al.  Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. , 2007, Blood.

[11]  K. Ghoshal,et al.  MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. , 2007, Gastroenterology.

[12]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[13]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[14]  L. Lim,et al.  A microRNA component of the p53 tumour suppressor network , 2007, Nature.

[15]  Shuomin Zhu,et al.  MicroRNA-21 Targets the Tumor Suppressor Gene Tropomyosin 1 (TPM1)* , 2007, Journal of Biological Chemistry.

[16]  Shuomin Zhu,et al.  miR-21-mediated tumor growth , 2007, Oncogene.

[17]  David P. Bartel,et al.  Supporting Online Material Materials and Methods Fig. S1 Tables S1 and S2 References Database S1 Disrupting the Pairing between Let-7 and Hmga2 Enhances Oncogenic Transformation , 2022 .

[18]  C. Liang,et al.  In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro , 2007, Nature Protocols.

[19]  L. Lim,et al.  Transcripts Targeted by the MicroRNA-16 Family Cooperatively Regulate Cell Cycle Progression , 2007, Molecular and Cellular Biology.

[20]  Chunhong Ma,et al.  Frequent loss of PDCD4 expression in human glioma: possible role in the tumorigenesis of glioma. , 2007, Oncology reports.

[21]  George A. Calin,et al.  A MicroRNA Signature of Hypoxia , 2006, Molecular and Cellular Biology.

[22]  O. Kent,et al.  A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes , 2006, Oncogene.

[23]  S. Taboga,et al.  Downregulation of the RECK‐tumor and metastasis suppressor gene in glioma invasiveness , 2006, Journal of cellular biochemistry.

[24]  John G Doench,et al.  Recapitulation of short RNA-directed translational gene silencing in vitro. , 2006, Molecular cell.

[25]  S. Freier,et al.  Improved targeting of miRNA with antisense oligonucleotides , 2006, Nucleic acids research.

[26]  R. Khokha,et al.  Individual Timp Deficiencies Differentially Impact Pro-MMP-2 Activation* , 2006, Journal of Biological Chemistry.

[27]  Jayant P. Menon,et al.  Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. , 2006, Cancer cell.

[28]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[29]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[30]  I. Holen,et al.  Role of osteoprotegerin (OPG) in cancer. , 2006, Clinical science.

[31]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  David N Louis,et al.  Molecular pathology of malignant gliomas. , 2006, Annual review of pathology.

[33]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[34]  P. Span,et al.  Prognostic relevance of uPAR-del4/5 and TIMP-3 mRNA expression levels in breast cancer. , 2005, European journal of cancer.

[35]  W. Vandertop,et al.  Tissue inhibitor of metalloproteinase-3 expression from an oncolytic adenovirus inhibits matrix metalloproteinase activity in vivo without affecting antitumor efficacy in malignant glioma. , 2005, Cancer research.

[36]  K. Kosik,et al.  MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. , 2005, Cancer research.

[37]  K. Hui,et al.  A microarray study to characterize the molecular mechanism of TIMP-3-mediated tumor rejection. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[38]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[39]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[40]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[41]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[42]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[43]  H. Wada,et al.  Expression of a novel matrix metalloproteinase regulator, RECK, and its clinical significance in resected non-small cell lung cancer. , 2004, European journal of cancer.

[44]  A. Aguzzi,et al.  IL-6 is required for glioma development in a mouse model , 2004, Oncogene.

[45]  F. Mannello,et al.  Tissue inhibitors of metalloproteinases and programmed cell death: Conundrums, controversies and potential implications , 2001, Apoptosis.

[46]  O. Tachibana,et al.  Frequent LOH at Chromosome 12q22‐23 and Apaf‐1 Inactivation in Glioblastoma , 2003, Brain pathology.

[47]  K. Alitalo,et al.  Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  B. Li,et al.  Expression profiling reveals off-target gene regulation by RNAi , 2003, Nature Biotechnology.

[49]  L. Claesson‐Welsh,et al.  A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2 , 2003, Nature Medicine.

[50]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[51]  Y. Okada,et al.  The role of matrix metalloproteinases in glioma invasion. , 2003, Frontiers in bioscience : a journal and virtual library.

[52]  David B. Alexander,et al.  The Membrane-Anchored MMP Inhibitor RECK Is a Key Regulator of Extracellular Matrix Integrity and Angiogenesis , 2001, Cell.

[53]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[54]  M. Weller,et al.  Molecular determinants of glioma cell migration and invasion. , 2001, Journal of neurosurgery.

[55]  Ralph Weissleder,et al.  In vivo molecular target assessment of matrix metalloproteinase inhibition , 2001, Nature Medicine.

[56]  S. B. Bratton,et al.  Recruitment, activation and retention of caspases‐9 and ‐3 by Apaf‐1 apoptosome and associated XIAP complexes , 2001, The EMBO journal.

[57]  N. Yamamoto,et al.  Adenovirus-mediated transfer of caspase-8 in combination with superrepressor of NF-kappaB drastically induced apoptosis in gliomas. , 2000, Biochemical and biophysical research communications.

[58]  A. Merlo,et al.  Frequent Co‐Alterations of TP53, p16/CDKN2A, p14ARF, PTEN Tumor Suppressor Genes in Human Glioma Cell Lines. , 1999, Brain pathology.

[59]  A. Baker,et al.  ©1999 Cancer Research Campaign Article no. bjoc.1998.0217 Inhibition of invasion and induction of apoptotic cell , 2022 .

[60]  P. Rothberg,et al.  Oncogenes and cancer. , 1983, Cancer investigation.