Markov Processes: Characterization and Convergence

Introduction. 1. Operator Semigroups. 2. Stochastic Processes and Martingales. 3. Convergence of Probability Measures. 4. Generators and Markov Processes. 5. Stochastic Integral Equations. 6. Random Time Changes. 7. Invariance Principles and Diffusion Approximations. 8. Examples of Generators. 9. Branching Processes. 10. Genetic Models. 11. Density Dependent Population Processes. 12. Random Evolutions. Appendixes. References. Index. Flowchart.