Factorization of selfadjoint quadratic matrix polynomials with real spectrum

Factorization theorems, and properties of sets of eigenvectors, are established for regular selfadjoint quatratic matrix polynomials L(λ) whose leading coefficeint is indefinite or possibly singular, and for which all eigenvalues are real of definite type. The two linear factors obtained have spectra which are just the eigenvalues of L(λ) of positive and negative types, respectively.