Rice Crop Detection Using LSTM, Bi-LSTM, and Machine Learning Models from Sentinel-1 Time Series

[1]  T. L. Toan,et al.  Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data , 2007 .

[2]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[3]  Hang Zhou,et al.  Deep learning based multi-temporal crop classification , 2019, Remote Sensing of Environment.

[4]  Marco Ottinger,et al.  Mapping rice areas with Sentinel-1 time series and superpixel segmentation , 2018 .

[5]  Xiang Zhao,et al.  Long Time Series Land Cover Classification in China from 1982 to 2015 Based on Bi-LSTM Deep Learning , 2019, Remote. Sens..

[6]  Alexandre Bouvet,et al.  Monitoring of the Rice Cropping System in the Mekong Delta Using ENVISAT/ASAR Dual Polarization Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[7]  S. R. Oza,et al.  Observing long-term changes in rice phenology using NOAA-AVHRR and DMSP-SSM/I satellite sensor measurements in Punjab, India , 2006 .

[8]  Xingrui Yu,et al.  Deep learning in remote sensing scene classification: a data augmentation enhanced convolutional neural network framework , 2017 .

[9]  Quazi K. Hassan,et al.  Application of Remote Sensors in Mapping Rice Area and Forecasting Its Production: A Review , 2015, Sensors.

[10]  Dailiang Peng,et al.  Detection and estimation of mixed paddy rice cropping patterns with MODIS data , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[11]  Qingmin Meng,et al.  K Nearest Neighbor Method for Forest Inventory Using Remote Sensing Data , 2007 .

[12]  S LewMichael,et al.  Deep learning for visual understanding , 2016 .

[13]  Renato Fontes Guimarães,et al.  Comparative Analysis of MODIS Time-Series Classification Using Support Vector Machines and Methods Based upon Distance and Similarity Measures in the Brazilian Cerrado-Caatinga Boundary , 2015, Remote. Sens..

[14]  Chi-Farn Chen,et al.  Assessment of Sentinel-1A data for rice crop classification using random forests and support vector machines , 2017 .

[15]  Heather McNairn,et al.  Rice identification and change detection using TerraSAR-X data , 2011 .

[16]  Jiaguo Qi,et al.  Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by Landsat-8 and PALSAR-2 , 2017, Remote. Sens..

[17]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[18]  Johannes R. Sveinsson,et al.  Random Forests for land cover classification , 2006, Pattern Recognit. Lett..

[19]  Huajun Tang,et al.  Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China , 2008, Int. J. Appl. Earth Obs. Geoinformation.

[20]  Miao Zhang,et al.  Mapping up-to-Date Paddy Rice Extent at 10 M Resolution in China through the Integration of Optical and Synthetic Aperture Radar Images , 2018, Remote. Sens..

[21]  Ze He,et al.  Monitoring Rice Phenology Based on Backscattering Characteristics of Multi-Temporal RADARSAT-2 Datasets , 2018, Remote. Sens..

[22]  Odete Rocha,et al.  Can hydrologic management practices of rice fields contribute to macroinvertebrate conservation in southern Brazil wetlands? , 2009, Hydrobiologia.

[23]  Marc Rußwurm,et al.  Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders , 2018, ISPRS Int. J. Geo Inf..

[24]  Chiharu Hongo,et al.  Using variance analysis of multitemporal MODIS images for rice field mapping in Bali Province, Indonesia , 2012 .

[25]  M. Chakraborty,et al.  Rice crop parameter retrieval using multi-temporal, multi-incidence angle Radarsat SAR data , 2005 .

[26]  Thuy Le Toan,et al.  Rice Mapping and Monitoring Using ENVISAT ASAR Data , 2008, IEEE Geoscience and Remote Sensing Letters.

[27]  Gaohuan Liu,et al.  Evaluation and Comparison of Random Forest and A-LSTM Networks for Large-scale Winter Wheat Identification , 2019, Remote. Sens..

[28]  Matti Pietikäinen,et al.  Deep Learning for Generic Object Detection: A Survey , 2018, International Journal of Computer Vision.

[29]  W. Wagner,et al.  Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data , 2016 .

[30]  K. Okamoto Estimation of rice-planted area in the tropical zone using a combination of optical and microwave satellite sensor data , 1999 .

[31]  Heather McNairn,et al.  Radar Remote Sensing of Agricultural Canopies: A Review , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[32]  Claudia Kuenzer,et al.  Remote sensing of rice crop areas , 2013 .

[33]  Martin Herold,et al.  On the Suitability of MODIS Time Series Metrics to Map Vegetation Types in Dry Savanna Ecosystems: A Case Study in the Kalahari of NE Namibia , 2009, Remote. Sens..

[34]  Jinwei Dong,et al.  High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data , 2019, Scientific Data.

[35]  Christoph Hütt,et al.  Rice monitoring with multi-temporal and dual-polarimetric TerraSAR-X data , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[36]  Mirco Boschetti,et al.  RiceAtlas, a spatial database of global rice calendars and production , 2017, Scientific Data.

[37]  B. Brisco,et al.  The application of C-band polarimetric SAR for agriculture: a review , 2004 .

[38]  Jiancheng Luo,et al.  Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data , 2019, GIScience & Remote Sensing.

[39]  Peter M. Atkinson,et al.  Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data , 2018 .

[40]  Ling Tong,et al.  Rice biomass retrieval from multitemporal ground-based scatterometer data and RADARSAT-2 images using neural networks , 2013 .

[41]  Luís Eduardo de Souza Robaina,et al.  COMPARTIMENTAÇÃO DO ESTADO DO RIO GRANDE DO SUL, BRASIL, ATRAVÉS DO USO DE GEOMORPHONS OBTIDOS EM CLASSIFICAÇÃO TOPOGRÁFICA AUTOMATIZADA , 2016 .

[42]  Gherardo Chirici,et al.  A meta-analysis and review of the literature on the k-Nearest Neighbors technique for forestry applications that use remotely sensed data , 2016 .

[43]  Lichao Mou,et al.  Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection , 2016, Remote. Sens..

[44]  Russell G. Congalton,et al.  Classification of multi-temporal SPOT-XS satellite data for mapping rice fields on a West African floodplain , 1998 .

[45]  V. Wuwongse,et al.  Discrimination of irrigated and rainfed rice in a tropical agricultural system using SPOT VEGETATION NDVI and rainfall data , 2005 .

[46]  Changsheng Li,et al.  Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China , 2002 .

[47]  Claudia Kuenzer,et al.  Estimating rice production in the Mekong Delta, Vietnam, utilizing time series of Sentinel-1 SAR data , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[48]  Hongling Fang,et al.  Rice crop area estimation of an administrative division in China using remote sensing data , 1998 .

[49]  Xiao Xiang Zhu,et al.  Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[50]  Changsheng Li,et al.  Mapping paddy rice agriculture in southern China using multi-temporal MODIS images , 2005 .

[51]  M. McHugh Interrater reliability: the kappa statistic , 2012, Biochemia medica.

[52]  M. Chakraborty,et al.  SAR signature investigation of rice crop using RADARSAT data , 2006 .

[53]  Stefano Pignatti,et al.  Downstream Services for Rice Crop Monitoring in Europe: From Regional to Local Scale , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[54]  Lin Wang,et al.  Multi-Temporal Detection of Rice Phenological Stages Using Canopy Spectrum , 2014 .

[55]  Germain Forestier,et al.  Deep learning for time series classification: a review , 2018, Data Mining and Knowledge Discovery.

[56]  Li Wang,et al.  Mapping Early, Middle and Late Rice Extent Using Sentinel-1A and Landsat-8 Data in the Poyang Lake Plain, China , 2018, Sensors.

[57]  Changsheng Li,et al.  Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images , 2006 .

[58]  Luca Gatti,et al.  Towards an Operational SAR-Based Rice Monitoring System in Asia: Examples from 13 Demonstration Sites across Asia in the RIICE Project , 2014, Remote. Sens..

[59]  Manabu Watanabe,et al.  Growth monitoring and classification of rice fields using multitemporal RADARSAT-2 full-polarimetric data , 2012 .

[60]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[61]  Akihiko Ito,et al.  Mapping Paddy Fields in Japan by Using a Sentinel-1 SAR Time Series Supplemented by Sentinel-2 Images on Google Earth Engine , 2020, Remote. Sens..

[62]  Liping Di,et al.  Using long short-term memory recurrent neural network in land cover classification on Landsat and Cropland data layer time series , 2018, International Journal of Remote Sensing.

[63]  Alexandre Bouvet,et al.  Mapping of Rice Varieties and Sowing Date Using X-Band SAR Data , 2018, Sensors.

[64]  A. Schneider,et al.  Mapping rice paddy extent and intensification in the Vietnamese Mekong River Delta with dense time stacks of Landsat data , 2015 .

[65]  Avik Bhattacharya,et al.  Sen4Rice: A Processing Chain for Differentiating Early and Late Transplanted Rice Using Time-Series Sentinel-1 SAR Data With Google Earth Engine , 2018, IEEE Geoscience and Remote Sensing Letters.

[66]  H. Tian,et al.  Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA's-AVHRR , 2013, PloS one.

[67]  E. Nezry,et al.  Adaptive speckle filters and scene heterogeneity , 1990 .

[68]  L. Maltchik,et al.  Does Non-Intentional Flooding of Rice Fields After Cultivation Contribute to Waterbird Conservation in Southern Brazil? , 2012 .

[69]  Hui Lin,et al.  Application of ENVISAT ASAR Data in Mapping Rice Crop Growth in Southern China , 2007, IEEE Geoscience and Remote Sensing Letters.

[70]  Irena Hajnsek,et al.  First Results of Rice Monitoring Practices in Spain by Means of Time Series of TerraSAR-X Dual-Pol Images , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[71]  Michael S. Lew,et al.  Deep learning for visual understanding: A review , 2016, Neurocomputing.

[72]  Federico Filipponi,et al.  Sentinel-1 GRD Preprocessing Workflow , 2019, Proceedings.

[73]  L. Maltchik Three new wetlands inventories in brazil , 2003 .

[74]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[75]  Vladimir Vapnik,et al.  An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.

[76]  T. L. Toan,et al.  Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta , 2011 .

[77]  Thi Thu Ha Nguyen,et al.  Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image analysis , 2012 .

[78]  Xueliang Zhang,et al.  Deep learning in remote sensing applications: A meta-analysis and review , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[79]  L. Kumar,et al.  A review of data assimilation of remote sensing and crop models , 2018 .

[80]  D. Batzer,et al.  Can rice field management practices contribute to the conservation of species from natural wetlands? Lessons from Brazil , 2017 .

[81]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[82]  Philippe Bolon,et al.  Statistical and operational performance assessment of multitemporal SAR image filtering , 2003, IEEE Trans. Geosci. Remote. Sens..

[83]  P Bolon,et al.  Adaptive-neighborhood speckle removal in multitemporal synthetic aperture radar images. , 2001, Applied optics.

[84]  Jungho Im,et al.  ISPRS Journal of Photogrammetry and Remote Sensing , 2022 .

[85]  F. Nishio,et al.  Spectral Characteristics and Mapping of Rice Plants Using Multi-Temporal Landsat Data , 2011 .

[86]  Wolfgang Wagner,et al.  Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM Data , 2015, Remote. Sens..

[87]  L. Maltchik,et al.  Does flooding of rice fields after cultivation contribute to wetland plant conservation in southern Brazil , 2010 .

[88]  Prasad S. Thenkabail,et al.  Mapping rice areas of South Asia using MODIS multitemporal data , 2011 .

[89]  Thuy Le Toan,et al.  Wheat Crop Mapping by Using ASAR AP Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[90]  Jinwei Dong,et al.  Evolution of regional to global paddy rice mapping methods: A review , 2016 .

[91]  Takashi Kurosu,et al.  The identification of rice fields using multi-temporal ERS-1 C band SAR data , 1997 .

[92]  Sushma Panigrahy,et al.  Discrimination of rice crop grown under different cultural practices using temporal ERS-1 synthetic aperture radar data , 1997 .

[93]  Prakhar Misra,et al.  Monitoring and Mapping of Rice Cropping Pattern in Flooding Area in the Vietnamese Mekong Delta Using Sentinel-1A Data: A Case of An Giang Province , 2019, ISPRS Int. J. Geo Inf..

[94]  L. Robaina,et al.  STUDY OF THE LANDFORMS OF THE IBICUÍ RIVER BASIN WITH USE OF TOPOGRAPHIC POSITION INDEX , 2018 .

[95]  Shaun Quegan,et al.  Filtering of multichannel SAR images , 2001, IEEE Trans. Geosci. Remote. Sens..

[96]  Andrew K. Skidmore,et al.  Complementarity of Two Rice Mapping Approaches: Characterizing Strata Mapped by Hypertemporal MODIS and Rice Paddy Identification Using Multitemporal SAR , 2014, Remote. Sens..

[97]  T. M. Kuplich,et al.  Seasonal dynamics of vegetation indices as a criterion for grouping grassland typologies , 2019, Scientia Agricola.

[98]  Dino Ienco,et al.  Mapping Irrigated Areas Using Sentinel-1 Time Series in Catalonia, Spain , 2019, Remote. Sens..

[99]  Andrew Nelson,et al.  Temporal changes in rice-growing area and their impact on livelihood over a decade: A case study of Nepal , 2011 .

[100]  M. Diuk-Wasser,et al.  Mapping rice field anopheline breeding habitats in Mali, West Africa, using Landsat ETM+ sensor data , 2004, International journal of remote sensing.

[101]  Rasmus Nyholm Jørgensen,et al.  A Novel Spatio-Temporal FCN-LSTM Network for Recognizing Various Crop Types Using Multi-Temporal Radar Images , 2019, Remote. Sens..

[102]  Yuan Zhang,et al.  Identifying paddy fields with dual-polarization ALOS/PALSAR data , 2011 .

[103]  Mingguo Ma,et al.  Comparison of Eight Techniques for Reconstructing Multi-Satellite Sensor Time-Series NDVI Data Sets in the Heihe River Basin, China , 2014, Remote. Sens..

[104]  Ping Chen,et al.  Application of multitemporal ERS-2 synthetic aperture radar in delineating rice cropping systems in the Mekong River Delta, Vietnam , 1998, IEEE Trans. Geosci. Remote. Sens..

[105]  Yuan Zhang,et al.  Characterizing L-Band Scattering of Paddy Rice in Southeast China With Radiative Transfer Model and Multitemporal ALOS/PALSAR Imagery , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[106]  Jin Chen,et al.  A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter , 2004 .

[107]  Bo Zhang,et al.  Rice Crop Monitoring in South China With RADARSAT-2 Quad-Polarization SAR Data , 2011, IEEE Geoscience and Remote Sensing Letters.

[108]  W. Salas,et al.  Mapping paddy rice with multitemporal ALOS/PALSAR imagery in southeast China , 2009 .

[109]  Jürgen Schmidhuber,et al.  LSTM: A Search Space Odyssey , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[110]  Dino Ienco,et al.  Land Cover Classification via Multitemporal Spatial Data by Deep Recurrent Neural Networks , 2017, IEEE Geoscience and Remote Sensing Letters.

[111]  L. Maltchik,et al.  Can management practices in rice fields contribute to amphibian conservation in southern Brazilian wetlands , 2009 .

[112]  Q. Mcnemar Note on the sampling error of the difference between correlated proportions or percentages , 1947, Psychometrika.

[113]  Taeho Jo,et al.  A Multiple Resampling Method for Learning from Imbalanced Data Sets , 2004, Comput. Intell..

[114]  Michael J. Collins,et al.  Speckle reduction for the forest mapping analysis of multi-temporal Radarsat-1 images , 2012 .

[115]  K. R. McCLOY,et al.  Monitoring rice areas using LANDSAT MSS data , 1987 .

[116]  Nikolaos Doulamis,et al.  Deep Learning for Computer Vision: A Brief Review , 2018, Comput. Intell. Neurosci..

[117]  D. S. Reddy,et al.  Prediction of vegetation dynamics using NDVI time series data and LSTM , 2018, Modeling Earth Systems and Environment.

[118]  Andrew E. Suyker,et al.  A Two-Step Filtering approach for detecting maize and soybean phenology with time-series MODIS data , 2010 .

[119]  B. Brisco,et al.  Rice monitoring and production estimation using multitemporal RADARSAT , 2001 .

[120]  Malcolm Davidson,et al.  GMES Sentinel-1 mission , 2012 .

[121]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[122]  G. Foody Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy , 2004 .

[123]  L. A. Hartmann,et al.  Estratigrafia dos derrames da Província Vulcânica Paraná na região oeste do Rio Grande do Sul, Brasil, com base em sondagem, perfilagem gamaespectrométrica e geologia de campo , 2011 .

[124]  R. G. Oderwald,et al.  Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques. , 1983 .

[125]  Sushma Panigrahy,et al.  Early estimation of rice area using temporal ERS-1 synthetic aperture radar data a case study for the Howrah and Hughly districts of West Bengal, India , 1997 .

[126]  Ferdinando Nunziata,et al.  A study of the use of COSMO-SkyMed SAR PingPong polarimetric mode for rice growth monitoring , 2016 .