Sampled-Data Stabilization of a Class of Nonlinear Systems With Application in Robotics

The output feedback stabilization problem for the class of nonlinear Lipschitz systems is considered. A discrete-time feedback controller is designed for the sampled-data case, where the output of the plant is only available at discrete points of time and where the objective is to stabilize the system continuously using a discrete-time controller. We show that exact stabilization in this case can be achieved using a direct sampled-data design approach, based on H ∞ optimization theory, in which neither the plant model nor the controller need to be discretized a priori. The proposed design is solvable using commercially available software and is shown to have important advantages over the classical emulation approach that has been used to solve similar problems. The applicability of the proposed techniques in the robotics field is thoroughly discussed from both the modeling and design perspectives.

[1]  Stanislaw H. Zak,et al.  On the stabilization and observation of nonlinear/uncertain dynamic systems , 1990 .

[2]  P. Kokotovic,et al.  A note on input-to-state stability of sampled-data nonlinear systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[3]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[4]  Zhihua Qu Robust Control of Nonlinear Uncertain Systems , 1998 .

[5]  Zhong-Ping Jiang,et al.  On Uniform Global Asymptotic Stability of Nonlinear Discrete-Time Systems With Applications , 2006, IEEE Transactions on Automatic Control.

[6]  Shuzhi Sam Ge,et al.  Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems , 2003, Autom..

[7]  S. Monaco,et al.  On regulation under sampling , 1997, IEEE Trans. Autom. Control..

[8]  Hassan K. Khalil,et al.  Output feedback sampled-data control of nonlinear systems using high-gain observers , 2001, IEEE Trans. Autom. Control..

[9]  R. Rajamani Observers for Lipschitz nonlinear systems , 1998, IEEE Trans. Autom. Control..

[10]  P. Kokotovic,et al.  Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations , 1999 .

[11]  Robin J. Evans,et al.  Controlling nonlinear time-varying systems via euler approximations , 1992, Autom..

[12]  Yury Orlov,et al.  Nonlinear Hinfinity-control of nonsmooth time-varying systems with application to friction mechanical manipulators , 2003, Autom..

[13]  A. Schaft On a state space approach to nonlinear H ∞ control , 1991 .

[14]  G. Sallet,et al.  Observers for Lipschitz non-linear systems , 2002 .

[15]  Costas Kravaris,et al.  System-theoretic properties of sampled-data representations of nonlinear systems obtained via Taylor-Lie series , 1997 .

[16]  Denis Dochain,et al.  Adaptive identification and control algorithms for nonlinear bacterial growth systems , 1984, Autom..

[17]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[18]  H. Marquez Nonlinear Control Systems: Analysis and Design , 2003, IEEE Transactions on Automatic Control.

[19]  L. Grüne Asymptotic Controllability and Exponential Stabilization of Nonlinear Control Systems at Singular Points , 1998 .

[20]  Romeo Ortega,et al.  A globally stable discrete-time controller for current-fed induction motors , 1996 .

[21]  Qing Zhao,et al.  LMI-based sensor fault diagnosis for nonlinear Lipschitz systems , 2007, Autom..

[22]  Spyros A. Svoronos,et al.  Discretization of nonlinear control systems via the Carleman linearization , 1994 .

[23]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[24]  M. Vidyasagar On the stabilization of nonlinear systems using state detection , 1980 .

[25]  D. Nesic,et al.  Set stabilization of sampled-data nonlinear differential inclusions via their approximate discrete-time models , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[26]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .

[27]  Z. Qu Robust control of a class of nonlinear uncertain systems , 1992 .

[28]  Yu. S. Ledyaev,et al.  Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..

[29]  I. Kanellakopoulos,et al.  Systematic Design of Adaptive Controllers for Feedback Linearizable Systems , 1991, 1991 American Control Conference.

[30]  A. Isidori Nonlinear Control Systems , 1985 .

[31]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[32]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[33]  J. Helton,et al.  H∞ control for nonlinear systems with output feedback , 1993, IEEE Trans. Autom. Control..

[34]  Qing Zhao,et al.  H/sub /spl infin// observer design for lipschitz nonlinear systems , 2006, IEEE Transactions on Automatic Control.

[35]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[36]  A. Isidori,et al.  Disturbance attenuation and H/sub infinity /-control via measurement feedback in nonlinear systems , 1992 .

[37]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[38]  J. Hedrick,et al.  Observer design for a class of nonlinear systems , 1994 .

[39]  Yury Orlov,et al.  Nonlinear H∞-control of time-varying systems: a unified distribution-based formalism for continuous and sampled-data measurement feedback design , 2001, IEEE Trans. Autom. Control..

[40]  David H. Owens,et al.  Fast Sampling and Stability of Nonlinear Sampled-Data Systems: Part 1. Existence Theorems , 1990 .

[41]  David J. Hill,et al.  Stability results for nonlinear feedback systems , 1977, Autom..

[42]  Éva Gyurkovics,et al.  Stabilization of sampled-data nonlinear systems by receding horizon control via discrete-time approximations , 2003, Autom..