3.55 keV hint for decaying axionlike particle dark matter

Recently, indications for an emission line at 3.55 keV have been found in the combined spectra of a large number of galaxy clusters and also in Andromeda. This line could not be identified with any known spectral line. It is tempting to speculate that it has its origin in the decay of a particle contributing all or part of the dark matter. In this note we want to point out that axion-like particles being all or part of the dark matter are an ideal candidate to produce such a feature. More importantly the parameter values necessary are quite feasible in extensions of the Standard Model based on string theory and could be linked up to a variety of other intriguing phenomena, which also potentially allow for new tests of this speculation.

[1]  F. Takahashi,et al.  The 7 keV axion dark matter and the X-ray line signal , 2014, 1402.6965.

[2]  D. Finkbeiner,et al.  X-ray line from exciting dark matter , 2014, 1402.6671.

[3]  F. Takahashi,et al.  7 keV sterile neutrino dark matter from split flavor mechanism , 2014, 1402.5837.

[4]  A. Boyarsky,et al.  Unidentified line in x-ray spectra of the Andromeda galaxy and Perseus galaxy cluster. , 2014, Physical review letters.

[5]  M. Markevitch,et al.  DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS , 2014, 1402.2301.

[6]  M. J. Pivovaroff,et al.  Conceptual design of the International Axion Observatory (IAXO) , 2014, 1401.3233.

[7]  M. Catelán,et al.  Neutrino and axion bounds from the globular cluster M5 (NGC 5904). , 2013, Physical review letters.

[8]  D. Tanner,et al.  Proposal for axion dark matter detection using an LC circuit. , 2013, Physical review letters.

[9]  Wei Xue,et al.  Thermal axion production , 2013, 1310.6982.

[10]  E. Fernandez-Martinez,et al.  Freeze-in through portals , 2013, 1309.7348.

[11]  Dmitry Budker,et al.  Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr) , 2013, 1306.6089.

[12]  Sarah Folkerts,et al.  Axion dark matter and Planck favor non-minimal couplings to gravity , 2013, 1304.7270.

[13]  J. Jaeckel A force beyond the Standard Model - Status of the quest for hidden photons , 2013, 1303.1821.

[14]  Jan Eike von Seggern,et al.  Any Light Particle Search II -- Technical Design Report , 2013, 1302.5647.

[15]  K. Olive,et al.  Gauge coupling unification and nonequilibrium thermal dark matter. , 2013, Physical review letters.

[16]  M. Raue,et al.  First lower limits on the photon-axion-like particle coupling from very high energy gamma-ray observations , 2013, 1302.1208.

[17]  A. Ringwald,et al.  The type IIB string axiverse and its low-energy phenomenology , 2012, 1206.0819.

[18]  S. O. Kepler,et al.  The rate of cooling of the pulsating white dwarf star G117−B15A: a new asteroseismological inference of the axion mass , 2012, 1205.6180.

[19]  A. Córsico,et al.  White dwarfs as physics laboratories: the case of axions , 2012, 1204.3565.

[20]  A. Ringwald,et al.  WISPy cold dark matter , 2012, 1201.5902.

[21]  A. Ringwald,et al.  Kinetic mixing of U(1)s in heterotic orbifolds , 2011, 1110.6901.

[22]  C. Mayrhofer,et al.  Moduli stabilisation for chiral global models , 2011, 1110.3333.

[23]  Javier Redondo,et al.  Cosmological bounds on pseudo Nambu-Goldstone bosons , 2011, 1110.2895.

[24]  A. Ringwald,et al.  Testing string vacua in the lab: from a hidden CMB to dark forces in flux compactifications , 2011, 1103.3705.

[25]  L. Witkowski,et al.  Kinetic mixing of U(1)’s for local string models , 2010, 1009.2380.

[26]  C. Vafa,et al.  An Exceptional Sector for F-theory GUTs , 2010, 1006.5459.

[27]  Piyush Kumar,et al.  An M theory solution to the strong CP-problem, and constraints on the axiverse , 2010, 1004.5138.

[28]  A. Ringwald,et al.  Light hidden‐sector U(1)s in string compactifications , 2010, 1002.1840.

[29]  M. Goodsell Light Hidden U(1)s from String Theory , 2009, 0912.4206.

[30]  L. Hall,et al.  Freeze-in production of FIMP dark matter , 2009, 0911.1120.

[31]  A. Ringwald,et al.  Naturally light hidden photons in LARGE volume string compactifications , 2009, 0909.0515.

[32]  R. Blumenhagen,et al.  SUSY breaking in local string/F-theory models , 2009, 0906.3297.

[33]  K. Nakayama,et al.  Non-Gaussianity from isocurvature perturbations , 2008, 0808.0009.

[34]  A. Ringwald,et al.  Kinetic Mixing of the Photon with Hidden U(1)s in String Phenomenology , 2008, 0803.1449.

[35]  O. Mansutti,et al.  Evidence for a new light spin-zero boson from cosmological gamma-ray propagation? , 2007, 0707.4312.

[36]  A. Ringwald,et al.  Need for purely laboratory-based axionlike particle searches , 2006, hep-ph/0610203.

[37]  A. Ringwald,et al.  Illuminating the hidden sector of string theory by shining light through a magnetic field , 2006, hep-ph/0608248.

[38]  J. Redondo,et al.  Evading astrophysical constraints on axion-like particles , 2005, hep-ph/0504202.

[39]  V. Balasubramanian,et al.  Systematics of moduli stabilisation in Calabi-Yau flux compactifications , 2005, hep-th/0502058.

[40]  S. Hannestad What is the lowest possible reheating temperature , 2004, astro-ph/0403291.

[41]  S. Abel,et al.  Brane–antibrane kinetic mixing, millicharged particles and SUSY breaking , 2003, hep-th/0311051.

[42]  K. Stelle,et al.  Heterotic anomaly cancellation in five dimensions , 1999, hep-th/9911156.

[43]  E. Massó,et al.  New constraints on a light spinless particle coupled to photons , 1997, hep-ph/9702275.

[44]  Massó,et al.  Light spinless particle coupled to photons. , 1995, Physical review. D, Particles and fields.

[45]  J. Isern,et al.  Axion cooling of white dwarfs , 1992, 1304.7652.

[46]  W. Marsden I and J , 2012 .